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Abstract 

 
This research work proposed a new extension of the inverse Lindley distribution called exponential-inverse 

Lindley distribution. The study derived some statistical properties of the distribution such as its ordinary 

moments, moment generating and characteristics function. It also considered the survival and hazard 

functions and the distribution of ordered statistics. Some plots of the distribution revealed that it is a flexible 

and skewed distribution. The implications of the plots for the survival function indicate that the exponential-

inverse Lindley distribution could be used to model time or age-dependent events, where survival rate 

decreases with time. The research also conducted a simulation study to check the consistency of the model 

parameters using maximum likelihood estimation. From the results of the simulation study, it was revealed 

that the average estimates tend to be closer to the true parameters when sample size increases and the biases 
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and mean square errors all decrease as sample size increases which is in agreement with the theory of 

estimation. The performance of the proposed exponential-inverse Lindley distribution was evaluated by 

means of an applications of the model to a real life dataset. 

 

 

Keywords: Inverse lindley distribution; exponential-inverse lindley distribution; statistical properties; 

parameters estimation; method of likelihood estimation. 

 

 

1 Introduction 
 

Lindley (1958) defined and investigated a probability distribution in context of fiducial statistic as a counter 

example of Bayesian theory which was later called “Lindley distribution”. Details of the fundamental properties 

of the Lindley distribution with its applications are available in Ieren et al. (2019). 

 

The inverse Lindley distribution is another form of the Lindley distribution and research has shown that authors 

mainly focused on the Lindley distribution and little research has been done on the inverse Lindley distribution. 

Sharma et al. (2015) discussed the properties of inverse Lindley distribution with application to stress strength 

reliability analysis. Sharma et al. (2016) introduced a two parameter extension of inverse Lindley distribution 

(generalized inverse Lindley distribution). Also, Alkarni (2015) proposed a three parameter inverse Lindley 

distribution (extended inverse Lindley distribution) with application to maximum flood level data. 

 

Several families of distributions have been proposed in literature such as quadratic rank transmutation map by 

Shaw and Buckley (2007), Exponentiated T-X by Alzaghal et al. (2013), Weibull-X by Alzaatreh et al. (2013), 

Weibull-G by Bourguignon et al. (2014), a Lomax-G family by Cordeiro et al. (2014), a new Weibull-G family 

by Tahir et al. (2016), a Lindley-G family by Cakmakyapan and Ozel (2016), a Gompertz-G family by Alizadeh 

et al. (2017) and Odd Lindley-G family by Gomes-Silva et al. (2017), odd Lomax-G family by Cordeiro et al. 

(2019) and a new Frechet-G family of continuous distributions by Ieren et al. (2024). These families have been 

used to study compound distribution such as exponential-Lindley distribution by Ieren and Balogun (2021), 

transmuted odd Lindley-Rayleigh distribution by Umar et al. (2021), transmuted Kumaraswamy distribution by 

Khan et al. (2016), a Lomax-exponential distribution by Ieren and Kuhe (2018), a sine Lomax-exponential 

distribution by Joel et al. (2024), a Lomax-inverse exponential distribution by Abdulkadir et al. (2020), Power 

Lindley distribution by Ghitany et al. (2013), bivariate generalized Rayleigh distribution by Abdel-Hady (2013), 

Lomax-Frechet distribution by Gupta et al. (2015), a transmuted Weibull-exponential distribution by Yahaya 

and Ieren (2017), a transmuted odd Lindley-Rayleigh distribution by Umar et al. (2021), Weibull-Frechet by 

Afify et al. (2016) and transmuted odd generalized exponential-exponential distribution Abdullahi et al. (2018). 

 

The cumulative distribution function (c.d.f) and probability density function (pdf) of the inverse Lindley 

distribution (ILD) are defined respectively as: 
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for 0x   and 0  where  is the scale parameter of ILD. 

 

2 The Exponential-Inverse Lindley Distribution (EILD) 
 

According to Bouguignon et al. (2014), the CDF and the PDF of the exponential-G family of distributions with 

an additional shape parameter ( 0  ) are defined by:  
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respectively, where ( )g x and ( )G x
 
stand for the PDF and CDF of the continuous distribution to be modified 

respectively. 

 

Using equation (1) and (2) in (3) and (4) and simplifying, the CDF and PDF of the EILD are respectively 

obtained as: 
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where , , 0x     ;  is a shape parameter and   is a scale parameter. Hence equation (5) and (6) are the cdf 

and pdf of the EILD. 

 

For some chosen values of the parameters  ,   and  , some possible shapes for the pdf  and the cdf of the 

EILD as shown in Figs. 1 and 2: 

 

      
 

Fig. 1. PDF of the EILD for different parameter values 
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Fig. 1 shows that the EILD is a skewed or flexible distribution which is relative to the parameter values of the 

distribution. This means that the distribution can be appropriate for datasets with different shapes. 

 

   
 

Fig. 2. CDF of the EILD for different parameter values 

 

The plot of the cdf above shows that the CDF curve increases when X increases, and approaches 1 when X 

becomes large, as expected. This demonstrate the validity of the proposed model.

  

3 Some Properties of the Proposed Distribution 
 

3.1 Moments 
 

Let X denote a continuous random variable the nth moment of X is given by; 
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Using the pdf of the EILD as given in equation (6). 
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First, by using power series expansion on the last term in equation (8) above gives: 
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Making use of the result in equation (9) and simplifying, equation (8) becomes 
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Using binomial expansion on the last term in equation (10) gives 
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By substituting the result of equation (11) in (10), we obtain 
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Again using binomial expansion on the last term in (12) gives: 
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Making use of the result (13) in equation (12) and simplifying, we obtain: 
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 be a constant, which implies that the pdf in equation 

(14) can also be written in its simple and linear form as: 
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Now, using the simplified of the pdf of the EILD in equation (15), the nth ordinary moment of the EILD is 

derived as follows: 
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Making use of integration by substitution method in equation (16), we perform the following operations: 
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Substituting for ,x  u and dx  in equation (16) and simplifying; we have: 
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Now, recall that ( )1
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Using the statement above, the nth ordinary moment of X for the EILD is obtained as: 
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Again recall that 
klm

W  is a constant and making use of its value as defined previously, the expression for the nth 

ordinary moment of EILD becomes: 
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3.2 Moment generating function 
 

The moment generating function of a random variable X can be obtained as 
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Using power series expansion in equation (20) and simplifying the integral gives: 
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3.3 Characteristics function 
 

A representation for the characteristics function is given by 
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Hence, simple algebra and use of power series expansion in (22) above yields: 
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3.4 Quantile function 
 

Let Q(u) = 𝐹−1(u) be the quantile function (qf) of F(x) for  0 < u <1. 

 

Taking F(x) to be the cdf of the Exponential-inverse Lindley distribution (EILD) and inverting it as above will 

give us the quantile function as follows. 

 

Inverting F(x) = u 
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Simplifying equation (24) above gives the quantile function as: 
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where u is a uniform variate on the unit interval (0,1) and ( )1
.W

−
represents the negative branch of the Lambert 

function.  

 

3.5 Skewness and kurtosis 
 

The Bowley’s measure of skewness (Kennedy and Keeping, 1962) based on quartiles is given by; 
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And the Moores’ (1998) kurtosis is on octiles and is given by; 
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4 Reliability Analysis 
 

Mathematically, the survival function is given by: 

 

S(x) = 1-F(x)                                                                                                                                          (28) 

 

Now, taking F(x) to be the cdf of the proposed EILD and substituting produces; 
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e
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= −     − +   +    

                                                                                                (29) 

 

Below is a plot of the survival function at chosen parameter values in Fig. 3 
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Fig. 3. The survival function of the EILD 

 

The Fig. 3 above revealed that the probability of survival for any random variable following a EILD decreases 

with time, that is, as life gets older, probability of life decreases. This implies that the EILD can be used to 

model random variables whose survival rate decreases as their age grows. 

 

The hazard function is defined as; 

 

( )
( )

( )

( )

( )1

f x f x
h x

F x S x
= =

−

                                                                                                                       (30) 

 

Taking f(x) and F(x) to be the pdf and cdf of the proposed Exponential-inverse Lindley distribution (EILD) and 

substituting in equation (30) gives the hazard function of EILD as: 
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(31)

 

 

The following is a plot of the hazard function at chosen parameter values in Fig. 4. 

 

       
 

Fig. 4. The hazard function of the EILD 

 

The Fig. 4 above revealed that the probability of failure for any random variable following an EILD increases 

with time, that is, as time goes on, probability of death increases. It also decreases slowly for some parameter 
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values. This implies that the EILD can be used to model random variables whose failure rate increases with 

time. 
 

5 Order Statistics 
 

Suppose 
1 2
, ,......,

n
X X X  is a random sample from a distribution with pdf, f(x), and let 

1: 2: :
, ,......,

n n i n
X X X  denote 

the corresponding order statistic obtained from this sample. The pdf, ( ):i n
f x  of the ith order statistic can be 

defined as; 
 

 1

:

!
( ) ( ) ( ) 1 ( )
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                                                                               (32) 

 

Taking f(x) and F(x) to be the pdf and cdf of the EILD respectively and  using (3) and (4), the pdf of the 
th

i  

order statistics
:i n

X for the EILD can be expressed from (32) as; 
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Hence, the pdf of the minimum order statistic 𝑋(1) and maximum order statistic 𝑋(𝑛) of the EILD are given by; 
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respectively. 
 

6 Estimation of Parameters of the EILD 
 

Let 
n

XXX .,,.........,
21

 be a sample of size ‘n’ independently and identically distributed random variables from the 

EILD with unknown parameters,   and   defined previously. The pdf of the EILD as defined previously gives 

the likelihood function as: 
 

( )
( )

( )

( )

( )

32

2

1

1
1

1
| , exp

1
1 11 1

11

xix

xixi

i
n

n
ii

i

i
i

x
ee

xx
L X

ee
xx










  

 


−−

−=
−

     + +       +       
 −      +          − + − +      +   +        



                                    
(36)

 

 

Let the log-likelihood function, ( )log / ,l L X  =
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therefore 
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Differentiating 𝑙 partially with respect to   and   respectively gives; 
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The solution of the non-linear system of equations; 
0

l




=

  
0

l
and




=

  

will give us the maximum likelihood 

estimates of parameters   and  . However, the solution cannot be obtained analytically except numerically 

with the aid of suitable statistical software like R, SAS, Maple, e.t.c when data sets are available. 

 

7 Simulation Study for EILD 
 

Here a Monte Carlo (MC) simulation study is conducted with the objective to assess the behavior of the MLEs 

of EILD via the optim() R-function with the argument method = "L-BFGS-B". It is used for maximizing the log-

likelihood function of a probabilistic model. We consider 500 MC replicates under different sample sizes n = 25, 

50. . . 500. These samples are obtained using the inverse CDF (also known as quantile function). The SS is 

conducted for three different combination of   and  . These combination values are given by (i)

0.5 0.5and = = , (ii) 2.5 0.5and = = , and (iii) 0.5 2.5and = =  

 

The judgment about the performances of ˆ
MLE

  and ˆ
MLE

  is made by considering two evaluation criteria. These 

criteria are the Mean square error (MSE) and Bias. 

 

The results obtained after performing the MC simulation are provided in Tables 1-3 and displayed graphically in 

Figs. 5–7. 

 

Table 1. Simulation results for the EILD for 0.5 0.5and = =  

 

N Measures/ 

Criteria 

Parameters N Measures/Criteria Parameters 

        

n=25 MLEs 0.5600  0.5382 n=200 MLEs 0.5091  0.5014 

Biases 0.0600  0.0382 Biases 0.0091  0.0014 

MSEs 0.0279  0.3045 MSEs 0.0028  0.0222 

n=50 MLEs 0.5344  0.5419 n=300 MLEs 0.5034  0.5067 

Biases 0.0344  0.0419 Biases 0.0034  0.0067 

MSEs 0.0148  0.2003 MSEs 0.0018  0.0148 

n=75 MLEs 0.5148  0.5397 n=400 MLEs 0.5049  0.4983 

Biases 0.0148  0.0397 Biases 0.0049  0.0017 

MSEs 0.0081  0.0935 MSEs 0.0014  0.0099 

n=100 MLEs 0.5099  0.5369 n=500 MLEs 0.5035  0.4996 

Biases 0.0099  0.0369 Biases 0.0035  0.0004 

MSEs 0.0067  0.0736 MSEs 0.0011   0.0082 
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Fig. 5. Plots of MLEs, Absolute Biases and MSEs of the EILD for 0.5 0.5and = =  

 

Table 2. Simulation results for the EILD for 2.5 0.5and = =  

 

n Measures/ 

Criteria 

Parameters N Measures/ 

Criteria 

Parameters 

        

n=25 MLEs 2.7013  0.6233 n=200 MLEs 2.5180  0.5150 

Biases 0.2013  0.1233 Biases 0.0180  0.0150 

MSEs 0.6767  0.4867 MSEs 0.0676  0.0175 

n=50 MLEs 2.6066  0.5710 n=300 MLEs 0.5262  0.5013 

Biases 0.1066  0.0710 Biases 0.0262  0.0013 

MSEs 0.3713  0.1569 MSEs 0.0469  0.0121 

n=75 MLEs 2.5684  0.5383 n=400 MLEs 2.5169  0.5028 

Biases 0.0684  0.0383 Biases 0.0169  0.0028 

MSEs 0.2195  0.0684 MSEs 0.0337  0.0082 

n=100 MLEs 2.5763  0.5099 n=500 MLEs 2.5162  0.5012 

Biases 0.0763  0.0099 Biases 0.0162  0.0012 

MSEs 0.1563  0.0356 MSEs 0.0269  0.0067 
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Fig. 6. Plots of MLEs, Absolute Biases and MSEs of the EILD model for 2.5 0.5and = =  
 

Table 3. Simulation results for the EILD for 0.5 2.5and = =  

 

n Measures/ 

Criteria 

Parameters N Measures/ 

Criteria 

Parameters 

        

n=25 MLEs 0.7048  2.1812 n=200 MLEs 0.5148  2.7677 

Biases 0.2048  0.3188 Biases 0.0148  0.2677 

MSEs 0.1390  3.1735 MSEs 0.0153  1.6678 

n=50 MLEs 0.6007  2.4817 n=300 MLEs 0.5158  2.6434 

Biases 0.1007  0.0183 Biases 0.0158  0.1434 

MSEs 0.0569  2.5852 MSEs 0.0109  1.2177 

n=75 MLEs 0.5694  2.5658 n=400 MLEs 0.5086  2.6309 

Biases 0.0694  0.0658 Biases 0.0086  0.1309 

MSEs 0.0409  2.2804 MSEs 0.0074  0.8962 

n=100 MLEs 0.5549  2.5642 n=500 MLEs 0.5080  2.6114 

Biases 0.0549  0.0642 Biases 0.0080  0.1114 

MSEs 0.0283  2.0422 MSEs 0.0067  0.7739 
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Fig.7. Plots of MLEs, Absolute Biases and MSEs of the EILD model for 0.5 2.5and = =  

 

From the results of the simulation study of EILD presented in Tables 1–3 and Figs. 5–7, we can see the averages 

of the MLEs (Mean), their biases (Absolute Bias) and mean square errors (MSEs) for the parameters of the 

EILD. Based on the values from the tables, it is clear that the average estimates tend to be closer to the true 

parameters when sample size increases and the biases and mean square errors all decrease as sample size 

increases which is in agreement with first-order asymptotic theory. 

 

8 Application of the proposed Model 
 

This section of chapter four presents two datasets, their descriptive statistics and applications to some selected 

generalized probability distributions. It has compared the adequacy of the EILD to that of five other extended 

models. The models are: Lomax-inverse Lindley distribution (LOMINLIND) by Ieren et al., (2019), odd 

Lomax-inverse exponential distribution (OLOMINExD) by Ieren et al., (2021), odd Lindley-inverse exponential 

distribution (OLINExD) by Ieren and Abdullahi (2020), Lomax inverse exponential distribution (LomINExD) 

by Abdulkadir et al. (2020) as well as the conventional inverse Lindley distribution (INLIND). 

 

For us to assess the models listed above, we made use of some criteria: the AIC (Akaike Information Criterion), 

CAIC (Consistent Akaike Information Criterion), BIC (Bayesian Information Criterion) and HQIC (Hannan 

Quin information criterion). The model with the lowest values of these statistics would be chosen as the best 

model to fit the data.  
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Table 4. Descriptive Statistics for the dataset 

 

parameters N Minimum 
1

Q  Median 
3

Q  Mean Maximum Variance Skewness Kurtosis 

Values 44 12.20 67.21  128.5 219.0 223.48  1776.00  93286.4 3.38382  13.5596 
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Data Set: This dataset is for the survival times of a group of patients suffering from head and neck cancer 

diseases who were treated with a combination of radiotherapy and chemotherapy (RT+CT). It was used 

previously by Efron (1988), Shanker et al. (2015), Oguntunde et al. (2017), Abdulkadir et al. (2020), Ieren et al. 

(2020) and Joel et al. (2024). The summary is given in the Table 4: 

 

Using the descriptive statistics in Table 4, we observed that the first data (dataset I) is skewed to the right or 

positively skewed with a very large variance.  

 

Table 5. Maximum Likelihood Parameter Estimates for the dataset used 

 

Distribution Parameter Estimates 

EILD ̂ =0.04167121  ̂ =9.49748916  - - 

OLomINExD ̂ =8.4647625  ̂ =
0.8465264  ̂ =8.5616942   - 

LomILnD ̂ =9.874074  ̂ =3.535500  ̂ =
8.494930  - 

LomINExD ̂ =9.939772  ̂
=

4.511308  ̂ =9.343647   - 

OLINExD ̂ =4.978665  ̂ =
1.523596   -

 
- 

INLnD ̂ =7.051431   
- - - 

 

Table 6. The statistics ℓ, AIC, CAIC, BIC and HQIC for the dataset used 

 

Distribution ˆ  AIC CAIC  BIC  HQIC Ranks 

EILD 281.3532  566.7063  566.999  570.2747  568.0297  1st  

OLomINExD 285.6976  577.3953  577.9953  582.7478  579.3803 2nd  

LomINLnD  308.9311 623.8623  624.4623  629.2149  625.8473 3rd  

LomINExD 307.2215  620.443  621.043  625.7956  622.428  4th   

OLINExD 2906.274  5816.548  5816.84  5820.116  5817.871  5th  

INLnD 349.9063  701.8125  701.9078  703.5967  702.4742  6th  

 

       
Fig. 8. Plots of the estimated densities and cdfs of the fitted distributions to the dataset 
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Fig. 9. Probability plots for the six fitted distributions based on the dataset 
 

Table 7. The A*, W*, K-S statistic and P-values based on the dataset used 
 

Distribution A* W* K-S P-Value (K-S) Ranks 

EILD 0.8075271  0.1398597  0.1239  0.4717 1st  

OLomINExD 0.1198959  0.01760287  0.18268  0.09317  2nd  

LomINLnD  0.380369  0.06120365  0.33865  5.264e-05  3rd   

LomINExD 0.3737685  0.06010676  0.36785  7.574e-06  4th   

OLINExD 2.825167  0.439813  0.97178  2.2e-16  5th  

INLnD 0.2080145  0.03300336  0.74617  2.2e-16  6th  
 

The following figure presents a histogram and estimated densities and cdfs of the fitted models to the dataset. 
 

Tables 5 presents the parameter estimates of the fitted distributions based on the dataset used and Table 6 lists 

the values of AIC, CAIC, BIC and HQIC for the fitted distributions based on the dataset. The values of AIC, 

CAIC, BIC and HQIC in Table 6 are smaller for the EILD compared to the other five distributions and this 

result indicates that the Exponential-inverse Lindley distribution (EILD) is better than the Lomax-inverse 

Lindley distribution, odd Lomax-inverse exponential distribution, odd Lindley-inverse exponential distribution, 

Lomax inverse exponential distribution as well as the conventional inverse Lindley distribution. 
 

Also, Table 7 presents the values of A*, W*, and K-S their associated p-values for the fitted distributions based 

on the dataset. The values of A*, W*, and K-S with their associated p-values in Table 7 show that the proposed 

distribution (EILD) is better than the Lomax-inverse Lindley distribution, odd Lomax-inverse exponential 

distribution, odd Lindley-inverse exponential distribution, Lomax inverse exponential distribution as well as the 

conventional inverse Lindley distribution. 
 

These results confirm the fact that the exponential-G family from the Weibull-G family of distributions has the 

capacity to produce distributions with greater flexibility as compared to the other probability distributions. This 

study has proven that the additional shape parameter in the exponential-G family is responsible for additional 

skewness and flexibility in the generalized continuous probability distributions just as previously reported by 

Alzaatreh et al., (2013), Ieren and Yahaya (2017), Ieren and Abdullahi (2020), Ieren et al. (2024) and 

Oguntunde et al. (2015), e.t.c. 
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9 Summary and Conclusion 
 

This study presents a new extension of the inverse Lindley distribution called exponential-inverse Lindley 

distribution. The research investigated some statistical properties of the proposed distribution such as its 

moments, moment generating function, characteristics function, survival function, hazard function and ordered 

statistics. The plots of the distribution revealed that it is a flexible and skewed distribution. Also, the plots for 

the survival function indicate that the exponential-inverse Lindley distribution (EILD) will be useful for 

modelling time or age-dependent variables, where survival rate decreases with time or age. The results of the 

simulation study of EILD revealed that the average estimates tend to be closer to the true parameter values when 

sample size increases and the biases and mean square errors of the estimates all decrease as sample size 

increases which is in agreement with first-order asymptotic theory. The study also discovered after application 

of the model to real life data that the EILD have better fit as compared to the other five distributions which 

include the Lomax-inverse Lindley distribution (LOMINLIND), odd Lomax-inverse exponential distribution, 

odd Lindley-inverse exponential distribution, Lomax inverse exponential distribution as well as the conventional 

inverse Lindley distribution. 

 

Disclaimer (Artificial Intelligence) 
 

Authors hereby that NO generative AI technologies such as large language model (ChatGPT, COPILOT,wtc) 

and text-to-image generators have been used during writing or editing of this manuscript. 

 

Competing Interests 
 

Authors have declared that no competing interests exist. 

 

References 
 

Abdel-Hady, D. H. (2013). Bivariate Generalized Rayleigh Distribution. Journal of Applied Sciences Research, 

9 (9): 5403-5411 

 

Abdulkadir, S. S., Joel, J. and Ieren, T. G. (2020). Statistical Properties of Lomax-Inverse Exponential 

Distribution and Applications to Real Life Data. FUDMA Journal of Sciences, 4(2): 680-694. 

 

Abdullahi, J., Abdullahi, U. K., Ieren, T. G., Kuhe, D. A. and Umar, A. A. (2018). On the properties and 

applications of transmuted odd generalized exponential-exponential distribution, Asian Journal of 

Probability and Statistics, 1(4):1-14. DOI: 10.9734/AJPAS/2018/44073. 

 

Afify, M. Z., Yousof, H. M., Cordeiro, G. M., Ortega, E. M. M. and Nofal, Z. M. (2016).The  Weibull-Frechet 

Distribution and Its Applications. Journal ofApplied Statistics.1-22. 

 

Alizadeh, M., Cordeiro, G. M., Pinho, L. G. B. and Ghosh, I. (2017). The Gompertz-G family of distributions. 

Journal of Statistical Theory and Practice, 11(1), 179–207, 

https://doi.org/10.1080/15598608.2016.1267668 

 

Alkarni, S. H. (2015). Extended inverse Lindley distribution: properties and application. Springer- Plus; 4, 1–13.  

 

Alzaatreh, A., Famoye, F. and Lee, C. (2013). A new method for generating families of continuous distributions. 

Metron, 71, 63–79. https://doi.org/10.1007/s40300-013-0007-y  

 

Bourguignon, M., Silva, R. B. and Cordeiro, G. M. (2014). The Weibull-G Family of Probability  Distributions. 

Journal of Data Science, 12: 53-68. 

 

Cakmakyapan, S. and Ozel, G. (2016). The Lindley Family of Distributions: Properties and Applications. 

Hacettepe Journal of Mathematics and Statistics, 46, 1-27. 

 

https://doi.org/10.1007/s40300-013-0007-y


 
 

 

 
Kuje et al.; Asian J. Prob. Stat., vol. 26, no. 12, pp. 102-120, 2024; Article no.AJPAS.121550 

 

 

 
119 

 

Cordeiro, G. M., Afify, A. Z., Ortega, E. M. M., Suzuki, A. K. and Mead, M. E. (2019). The odd Lomax 

generator of distributions: Properties, estimation and applications. Journal of Computational and Applied 

Mathematics, 347, 222–237. https://doi.org/10.1016/j.cam.2018.08.008  

Cordeiro, G. M., Ortega, E. M. M., Popovic, B. V and Pescim, R. R. (2014). The Lomax generator of 

distributions: Properties, minification process and regression model. Applied Mathematics and 

Computation, 247:465-486 

 

Efron, B. (1988). Logistic regression, survival analysis and the Kaplan-Meier curve. Journal of the American 

Statistical Association, 83: 414-425. 

 

Ghitany, M., Al-Mutairi, D., Balakrishnan, N. and Al-Enezi, L. (2013). Power Lindley distribution and 

associated inference. Comput. Stat. Data Anal. 64, 20–33. 

 

Gomes-Silva, F., Percontini, A., De Brito, E., Ramos, M. W., Venancio, R. and Cordeiro, G. M. (2017). The 

Odd Lindley-G Family of Distributions. Austrian Journal of Statistics, 46, 65-87. 

https://doi.org/10.17713/ajs.v46i1.222 

 

Gupta, V., Bhatt, M. and Gupta, J. (2015). The Lomax-Frechet distribution. Journal of Rajasthan Academy of 

Physical Sciences, 14(1): 25-43 

 

Hyndman. R.J. and Fan, Y. (1996). Sample quantiles in statistical packages, The American Statistician, 50 (4): 

361-365. 

 

Ieren, T. G. and Abdullahi, J. (2020). Properties and Applications of a Two-Parameter Inverse Exponential 

Distribution with a Decreasing Failure Rate. Pakistan Journal of Statistics, 36(3): 183-206. 

 

Ieren, T. G. and Balogun, O, S. (2021). Exponential-Lindley Distribution: Theory and Application to Bladder 

Cancer Data. Journal of Applied Probability and Statistics, 16(2): 129-146. 

 

Ieren, T. G. and Kuhe, A. D. (2018). On the Properties and Applications of Lomax-Exponential Distribution. 

Asian Journal of Probability and Statistics, 1(4), 1-13. DOI: 10.9734/AJPAS/2018/42546. 

 

Ieren, T. G. and Yahaya, A. (2017). The Weimal Distribution: its properties and applications. Journal of the 

Nigeria Association of Mathematical Physics, 39: 135-148.  

 

Ieren, T. G., Abdulkadir, S. S., Okolo, A. and Jibasen, D. (2024). A new Fréchet-G family of continuous 

probability distributions: Special Models, Properties, Simulation and Applications. Journal of the Royal 

Statistical Society Nigeria Group (JRSS-NIG Group), 1(1), 46-71. 

 

Ieren, T. G., Abdulkadir, S. S., Okolo, A., Jibasen, D. and Dike, I. J. (2020). Statistical Properties and 

Applications of a Transmuted Exponential inverse Exponential Distribution. Equity Journal of Science 

and Technology, 7(2): 105-124. 

 

Ieren, T. G., Koleoso, P. O., Chama, A. F., Eraikhuemen, I. B. and Yakubu, N. (2019). A Lomax-inverse 

Lindley Distribution: Model, Properties and Applications to Lifetime Data. Journal of Advances in 

Mathematics and Computer Science, 34(3-4): 1-28. 

 

Ieren, T. G., Balogun, O. S. and Chukwu, A. (2021). Odd Lomax Inverse Exponential Distribution: Model, 

Properties and Applications. SSRN:  http://dx.doi.org/10.2139/ssrn.3927604, HELIYON-D-21-06406. 

 

Joel, J., Yakura, B. S., Aniah-Betiang, E. I., Iseyemi, S. O. and Ieren, T. G. (2024). A Sine Lomax-Exponential 

Distribution: Its Properties, Simulation and Applications to Survival Data. African Journal of 

Mathematics and Statistics Studies, 7(4), 296-319. DOI:10.52589/AJMSS-IHSYZU29 

 

Kenney, J. F. and Keeping, E. S. (1962). Mathematics of Statistics, 3 edn, Chapman & Hall Ltd, New Jersey. 

 

https://doi.org/10.1016/j.cam.2018.08.008
https://doi.org/10.17713/ajs.v46i1.222
https://publications.funaab.edu.ng/index.php/JRSS-NIG
https://publications.funaab.edu.ng/index.php/JRSS-NIG
https://papers.ssrn.com/sol3/cf_dev/AbsByAuth.cfm?per_id=4838858
https://papers.ssrn.com/sol3/cf_dev/AbsByAuth.cfm?per_id=4822029
https://papers.ssrn.com/sol3/cf_dev/AbsByAuth.cfm?per_id=1676330
https://dx.doi.org/10.2139/ssrn.3927604


 
 

 

 
Kuje et al.; Asian J. Prob. Stat., vol. 26, no. 12, pp. 102-120, 2024; Article no.AJPAS.121550 

 

 

 
120 

 

Khan, M. S., King, R. and Hudson, I. L. (2016). Transmuted kumaraswamy distribution. Statistics in Transition, 

17(2): 183-210 

 

Lindley, D.V. (1958). Fiducial distributions and Bayes' theorem, J. Royal Stat. Soc. Series B, 20, 102-107. 

Moors, J. J. (1988). A quantile alternative for kurtosis. Journal of the Royal Statistical Society: Series D, 37: 25–

32. 

 

Oguntunde, P. E., Adejumo, A. O. and Owoloko, E. A. (2017). Exponential Inverse Exponential (EIE) 

distribution with applications to lifetime data. Asian Journal Scientific Research, 10: 169-177. 

 

Oguntunde, P. E., Balogun, O. S., Okagbue, H. I. and Bishop, S. A. (2015). The Weibull-Exponential 

Distribution: Its properties and application. Journal of Applied Sciences, 15(11): 1305-1311. 

 

Sharma, V. K, Singh, S. K, Singh, U. and Agiwal, V. (2015). The inverse Lindley distribution: a stress-strength 

reliability model with application to head and neck cancer data. J. Indust. Prod. Eng. 32 (3), 162–173. 

 

Sharma, V. K., Singh, S. K., Singh, U. and Merovci, F. (2016). The generalized inverse Lindley distribution: a 

new inverse statistical model for the study of upside down bathtub data. Commun. Stat.-Theo. Meth., 45 

(19), 5709–5729. 

 

Shaw, W. and Buckley, I. (2007). The alchemy of probability distributions: beyond gram-charlier expansions 

and a skew-kurtotic-normal distribution from a rank transmutation map. Research Report. 

https://doi.org/10.48550/arXiv.0901.0434  

 

Tahir, M. H., Zubair, M., Mansoor, M., Cordeiro, G. M. and Alizadeh, M. (2016a). A New Weibull-G family of 

distributions. Hacettepe Journal of Mathematics and Statistics, 45(2), 629-647. 

https://doi.org/10.1186/s40488-014-0024-2 

 

Umar, S. A., Bukar, A. B., Makama, M. S. and Ieren, T. G. (2021). Some Results on the Transmuted Odd 

Lindley-Rayleigh Distribution. Benin Journal of Statistics, 4:135– 153.  

 

Yahaya, A. and Ieren, T. G. (2017). On Transmuted Weibull-Exponential Distribution: Its Properties and 

Applications. Nigerian Journal of Scientific Research, 16(3), 289-297. 

 
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and 

contributor(s) and not of the publisher and/or the editor(s). This publisher and/or the editor(s) disclaim responsibility for any injury to people or 

property resulting from any ideas, methods, instructions or products referred to in the content. 

__________________________________________________________________________________________ 
© Copyright (2024): Author(s). The licensee is the journal publisher. This is an Open Access article distributed under the terms of the 

Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and 

reproduction in any medium, provided the original work is properly cited. 

 

 

 

Peer-review history: 

The peer review history for this paper can be accessed here (Please copy paste the total link in your 

browser address bar) 

https://www.sdiarticle5.com/review-history/121550 

https://doi.org/10.48550/arXiv.0901.0434
https://doi.org/10.1186/s40488-014-0024-2
https://www.sdiarticle5.com/review-history/121550

