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ABSTRACT 
 
The study was carried out in a polyhouse using germination trays to examine the impact of salt 
stress on seedling growth and germination across 42 Kodo Millet genotypes. Conducted at the 
Research Farm of RVSKVV, Gwalior, the experiment followed a Completely Randomized Design 
(CRD) with three replications. To minimize variability and maintain uniform conditions, a 
standardized growing medium composed of compost, vermiculite, and cocopeat in a 1:1:1 ratio was 
employed. Salt stress levels were assessed using NaCl solutions at concentrations of 50 mM, 100 
mM, 250 mM, and 500 mM. In this study, two principal components with eigen values greater than 
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one collectively accounted for 72.2% of the total variability among the analyzed traits. The first 
principal component (PC1) contributed the most, explaining 63.05% of the variation, while the 
second principal component (PC2) explained 9.15%. PC1 was primarily associated with traits such 
as days to emergence, final germination percentage, shoot length, seedling length, shoot fresh 
weight, root fresh weight, total fresh weight, total dry weight, and proline content. In contrast, PC2 
was dominated by traits such as root length, vigor index, chlorophyll a, and chlorophyll b. The 
scores for PC1 ranged from 0.002 to 3.795 for positive values and -7.521 to -0.034 for negative 
values, while PC2 scores ranged from 0.061 to 2.894 for positive values and -2.687 to -0.089 for 
negative values. Scree plot and biplot collectively highlighted the major contributors to variability 
and their interrelationships under the salt stress condition in kodo millet genotypes. 
 

 
Keywords: Kodo millet; principal component analysis; salt sress. 

 
1. INTRODUCTION 
 
Kodo millet (Paspalum scrobiculatum) is 
increasingly important due to its resilience for 
biotic and abiotic stresses, making it ideal for 
regions facing climate change impacts (Gyawali, 
2021, Swapnil et al., 2024). Its ability to grow 
with minimal inputs supports sustainable, low-
input farming systems (Ravikesavan et al., 2023, 
Sanodiya et al., 2023). Nutritionally, kodo millet is 
rich in protein, fiber, iron, and antioxidants, with a 
low glycemic index, making it beneficial for 
managing diabetes and promoting overall health 
(Deshpande et al., 2015, Vetriventhan & 
Upadhyaya 2019, Arya & Shakya, 2021, Bunkar 
et al., 2021). As a gluten-free grain, it also 
supports dietary diversity and addresses 
micronutrient deficiencies (Priya et al., Yadav et 
al., 2024). Its role in ensuring food security, 
especially for smallholder farmers in marginal 
areas, and its contribution to biodiversity and 
sustainable agriculture make kodo millet a crucial 
crop in today’s food systems. 

 
Although kodo millet is generally tolerant to 
various stresses, its yield is adversely affected by 
salinity stress, as it is a glycophyte crop that can 
only tolerate low levels of salt (Flowers & Colmer 
2008, Shabala, 2013). India incurs economic 
losses of approximately 249 billion Indian rupees 
each year due to around 6.73 million hectares of 
salt-affected soils (SAS) that remain un-
reclaimed. These losses are projected to rise 
substantially, as future estimates suggest that 
SAS areas could expand to nearly 16 million 
hectares by 2050, driven by improper irrigation 
practices and the impacts of climate change 
(Kumar et al., 2022). Cultivating salt-tolerant 
crops and varieties is a key strategy for soil 
reclamation and improving productivity (Ashraf & 
Munns 2022). Salt-tolerant cultivars are more 
effective in reclaiming salt-affected soils because 

they naturally adapt to high salinity, improving 
soil health over time without the high costs of 
physical or chemical interventions. By stabilizing 
soil structure, reducing erosion, and enhancing 
nutrient cycling, these cultivars sustainably 
improve both soil quality and agricultural 
productivity (Ashraf et al., 2008, Munns & 
Gilliham 2015). 
 

Principal Component Analysis (PCA) is a widely 
used statistical technique in plant breeding that 
simplifies data analysis, identifies patterns, and 
guides decision-making (Khatun et al., 2023). 
Plant breeding to evaluate stress tolerance 
involves assessing numerous traits, including 
yield, quality, as well as morphological and 
physiological characteristics, which makes data 
management a complex task. PCA addresses 
this by reducing the dimensionality of datasets 
while retaining most of the variation, thereby 
simplifying interpretation. It groups correlated 
traits into principal components (PCs), helping 
breeders understand relationships among traits. 
For instance, traits like root length and yield 
might load heavily on the same component, 
indicating a strong association. This grouping 
also allows breeders to identify key traits 
contributing most to variation, enabling them to 
focus on the most impactful traits for selection 
(Roka et al., 2024).  
 

PCA is essential for distinguishing between 
genotypes based on phenotypic or genotypic 
data, often through scatter plots that visually 
separate genotypes, aiding the identification of 
unique or promising candidates. It also plays a 
critical role in designing breeding programs by 
guiding the selection of parents with 
complementary traits, ensuring effective 
combinations (Roka et al., 2024, Mehta et al., 
2023). Additionally, PCA is valuable in stress and 
adaptation studies, where it evaluates plant 
performance under different conditions by 



 
 
 
 

Mishra et al.; J. Agric. Ecol. Res. Int., vol. 25, no. 6, pp. 233-241, 2024; Article no.JAERI.128621 
 
 

 
235 

 

grouping traits or environments based on 
responses. This facilitates the selection of 
genotypes with broad adaptability or specific 
stress tolerance (Füzy et al., 2019). Its 
visualization capabilities in 2D or 3D plots 
enhance the intuitive understanding of complex 
datasets.  
 
Principal Component Analysis is a powerful 
statistical tool used to study salt stress tolerance 
in plants by identifying and summarizing key 
variables that contribute to phenotypic or 
physiological variations. Under salt stress 
conditions, plants exhibit complex responses 
involving multiple traits, such as growth rate, 
photosynthetic efficiency and osmotic 
adjustments. PCA helps reduce the 
dimensionality of such datasets by grouping 
correlated traits into principal components (PCs), 
each representing a distinct aspect of variation. 
By identifying these associations, one can get 
insights into which traits contribute to enhanced 
salt tolerance, which could guide breeding 
programs focused on improving resilience in 
kodo millet. 
 

2. MATERIALS AND METHODS 
 
The experiment was executed in a polyhouse at 
the Research Farm of the Department of 
Genetics & Plant Breeding, College of 
Agriculture, RVSKVV, Gwalior, MP, India. The 
study material consisted of 42 kodo millet 
genotypes, with 40 sourced from ICRISAT, 
Hyderabad, and two varieties, JK 137 and JK 
155, obtained from Jawaharlal Nehru Krishi 
Vishwavidalaya (JNKVV), Jabalpur, MP, India. A 
even growth medium of compost, vermiculite, 
and cocopeat in a 1:1:1 ratio was prepared to 
maintain consistency and avoid weed problem. 

The setup comprised nine plastic germination 
trays, each containing 112 cells with a height of 4 
cm. Completely Randomized Design (CRD) was 
used with three replications across both control 
and stress conditions (NaCl concentrations of 50 
mM, 100 mM, 250 mM, and 500 mM). Seeds 
were planted at a depth of 1 cm, with four seeds 
per cell. Salt stress tolerance was assessed by 
irrigating with specified NaCl concentrations from 
the first irrigation, while the control group 
received distilled water. Observations of morpho-
physiochemical traits were logged 30 days post-
germination. The ten morphological traits 
analyzed included days of emergence, final 
germination percentage, shoot length, root 
length, seedling length, shoot fresh weight, root 
fresh weight, total fresh weight, total dry weight, 
and vigor index. Physiochemical traits measured 
were proline content, chlorophyll a, chlorophyll b, 
total chlorophyll concentration, chlorophyll index, 
and salt tolerance index. Principal Component 
Analysis was performed using xlstat software. 
 

3. RESULTS AND DISCUSSION 
 
At concentrations greater than 50 mM (namely 
100 mM, 250 mM, and 500 mM), the impacts 
were intense, leading to total mortality and no 
germination. As a result, all observations were 
conducted for salt stress conditions solely at a 
concentration of 50 mM NaCl. 
 
Out of the 12 principal components (PCs) 
analyzed, only two exhibited eigen values greater 
than 1, collectively accounting for 72.2% of the 
total variability among the studied traits.                    
PC1 contributed the most to the variability, 
explaining 63.05% variation, followed by PC2, 
which accounted for 9.15% of the variation 
(Table 1). 

 
Table 1. List of kodo millet genotypes used in the investigation 

 
S.No. Genotypes S.No. Genotypes S.No. Genotypes S.No. Genotypes 

1. IPs 4 12. IPs 429 23. IPs 706 34. IPs 862 
2. IPs 5 13. IPs 585 24. IPs 730 35. IPs 870 
3. IPs 91 14. IPs 606 25. IPs 741 36. IPs 883 
4. IPs 105 15. IPs 627 26. IPs 764 37. IPs 891 
5. IPs 176 16. IPs 628 27. IPs 777 38. IPs 908 
6. IPs 181 17. IPs 653 28. IPs 782 39. IPs 919 
7. IPs 208 18. IPs 654 29. IPs 785 40. IPs 928 
8. IPs 287 19. IPs 670 30. IPs 793 41. JK 137 
9. IPs 319 20. IPs 694 31. IPs 795 42. JK 155 
10. IPs 358 21. IPs 695 32. IPs 814   
11. IPs 388 22. IPs 699 33. IPs 828   
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Fig. 1. Scree plot between eigen value and principal components 
 

The eigen value of a component is the variance 
of the data explained by that component. A 
higher eigen value indicates greater importance 
of the component. If eigen value greater than 1 
the component captures more variance than any 
single original variable and it contributes 
significantly in explaining the data variability. If 
eigen value is lesser than 1 the component 
captures less variance than a single variable, so 
it is usually discarded (Johnstone 2001, 
Danisman et al., 2014). Here scree plot is used 
as a visual tool to assess the importance of each 
principal component. It represents the proportion 
of the total variance explained by each principal 
component in descending order (Fig. 1). 
 
Table 2 reveals that each principal component is 
separately loaded with various morphological 
and physiochemical traits under investigation 
known as factor loadings. Value for factor loading 
revealed that the first principal component (PC1) 
which accounted for the highest variation was 
related with traits viz., days of emergence, final 
germination percentage, shoot length, seedling 
length, shoot fresh weight, root fresh weight, total 
fresh weight, total dry weight and proline. The 
second principal component (PC2) was 
dominated by traits viz., root length, vigor index, 
chlorophyll a and chlorophyll b. Factor loadings 
represent the relationship between the original 
variables and the principal components. These 
values indicate how strongly each variable 
contributes to or correlates with a specific 
principal component. Factor loadings range           

from -1 to 1, where values close to 1 or -1 signify 
a strong positive or negative correlation, 
respectively, and values near 0 indicate little to 
no relationship with the component. They are 
crucial for understanding the structure of the data 
because they describe the weight of each 
variable in forming a principal component 
(Jolliffe, 2002, Winter & Dodou, 2016, Yamamoto 
et al., 2014). 

 
The factor score of the each component (PC1 
and PC2) had positive and negative values. 
Factor scores greater than 1 are highlighted in 
bold in Table 3. Factor scores represent the 
transformed values of the original data points in 
the reduced dimensional space defined by the 
principal components. In PC1, the positive 
scores ranged from 0.002 (Ips 670) to 3.795 (Ips 
628), while negative value ranged from -7.521 
(Ips 870) to -0.034 (Ips 764). In PC2, the positive 
value of the component arrayed from 0.061(Ips 
795) to 2.894 (Ips 5) and negative value ranged 
from -2.687 (Ips 695) to -0.089 (Ips 764). 
Studying factor scores in principal component 
analysis is crucial as they represent individual 
genotypes in the reduced-dimensional space 
(Roka et al. 2024). Derived from the linear 
combination of original variables weighted by 
component loadings, factor scores help reveal 
patterns, groupings, and outliers in the dataset, 
enabling a clearer understanding of the 
distribution and clustering of data based on the 
most significant variance dimensions (Jolliffe, 
2002, Abdi & Williams, 2010). 
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Table 2. Eigen values, variability percentage and cumulative variability percentage of 12 principal components 
 

Particulars PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 

Eigen value 10.08 1.46 0.89 0.81 0.68 0.53 0.49 0.32 0.27 0.19 0.12 0.09 
Variability (%) 63.05 9.15 5.61 5.10 4.26 3.35 3.10 2.01 1.71 1.18 0.75 0.60 

Cumulative 
variability (%) 

63.05 72.21 77.83 82.93 87.19 90.54 93.65 95.67 97.38 98.56 99.32 99.93 
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Table 3. Factor loadings for traits under study 
 

Characters PC1 PC2 

Days of emergence (days) 0.896 0.185 
Final germination percentage (%) 0.795 -0.206 
Shoot length (cm) 0.901 -0.158 
Root length (cm) 0.156 0.529 
Seedling length (cm) 0.918 -0.161 
Shoot fresh weight (g) 0.839 -0.266 
Root fresh weight (g) 0.742 -0.046 
Total fresh weight (g) 0.873 -0.219 
Total dry weight (g) 0.599 -0.291 
Vigor index -0.421 0.775 
Proline (μg g−1 fresh weight) 0.667 0.417 
Chlorophyll a (mg g−1 tissue fresh weight) 0.509 0.739 
Chlorophyll b (mg g−1 tissue fresh weight) 0.430 0.566 
Total chlorophyll (mg g−1 tissue fresh weight) 0.785 0.548 
Chlorophyll index 0.839 0.121 
Salt tolerance index (%) 0.776 -0.063 

 

 
 

Fig. 2. Biplot against PC1 and PC2 for studied characters of 42 genotypes 
 
Genotypes which are common in PC1 and PC2 
are Ips 5, Ips 208 and Ips 706 indicating that 
these genotypes contribute significantly to the 
variability captured by multiple principal 
components and thus for all the principal 
components under study. This suggests that 

these genotypes are influential and well-
represented in the reduced-dimensional space, 
as they align strongly with the dominant patterns 
or structures in the dataset (Shashibhushan et 
al., 2022, Vetriventhan & Upadhyaya, 2019). 
Such genotypes may exhibit attributes that are 
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central to the underlying relationships among 
variables, reflecting a strong, consistent 
presence in the most important dimensions of 
variance. Identifying these genotypes can help 
highlight key patterns or representative 
observations in the data. 
 
The biplot (Fig. 2) typically displays the first two 
principal components (PC1 and PC2) as the 
axes, as these components capture the most of 
the variability. Each data point (observation) is 
plotted in the reduced-dimensional space using 
its factor scores. Variables in a biplot are 
represented as vectors (arrows) radiating from 
the origin (Shashibhushan et al., 2022, Gabriel, 
1971). The direction of the arrows indicates how 
each variable contributes to the principal 
components, while the length reflects the 
strength of this influence. Longer arrows signify a 
stronger contribution of the variable to the 
principal components, highlighting its importance 
in explaining the variance within the data. The 
angle between arrows in a biplot indicates the 
correlations between variables. Small angles 
suggest a high positive correlation, perpendicular 
arrows imply no correlation, and opposite 
directions signify a negative correlation. 
Additionally, the projection of observations onto 
the arrows represents how strongly an 
observation is associated with a particular 
variable, providing insight into the relationships 
between observations and variables (Wedlake, 
2008, Gower & Hand, 1995, Holland, 2008). 
 

4. CONCLUSION 
 

Kodo millet, characterized by small floret size 
and a high degree of self-pollination, poses 
significant challenges for hybridization. 
Consequently, pure line and mass selection from 
high-yielding germplasm accessions are often 
preferred methods for varietal development. In 
India, most small millet varieties have been 
developed from existing germplasm. Evaluating 
preserved germplasm for salt stress tolerance 
offers significant potential to enhance Kodo millet 
yields (Sao et al. 2024). Principal Component 
Analysis (PCA) is a valuable tool in both pure line 
and mass selection, as it simplifies the 
assessment of genetic variability and trait 
significance. In pure line selection, PCA identifies 
traits contributing to variability, clusters similar 
lines, and highlights those performing well under 
specific conditions, such as stress. In mass 
selection, PCA evaluates population diversity, 
identifies critical traits, tracks selection progress, 
and examines environmental interactions. By 
reducing data complexity and focusing on traits 

driving variability, PCA improves the efficiency 
and accuracy of breeding strategies in both 
approaches. 
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