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Abstract: In case of a fire at a high-rise building which is densely populated, an extension ladder is
used to rescue people who have yet to evacuate to a safe place away from the fire, whereas those
who are stranded at a height that is unreachable with the ladder should be promptly saved with
different rescue methods. In this case, an application of the tethered flight system capable of receiving
power over a power cable from the ground to a multicopter may guarantee effective execution of
the rescue plan at the scene where fire is raging without any restrictions of the flight time. This
article identified restrictions that should be considered in the design of a multicopter capable of
tethered flight aimed to rescue stranded people at an inaccessible location with an extension ladder
at a fire-ravaged high-rise building and assessed its feasibility. A power cable capable of providing
dozens of kilowatts of electricity should be installed to enable the implementation of the rescue
mission using the tethered multicopter. A flexible multi-body dynamics modeling and simulation
with viscoelastic characteristics and heavy weight of power cable were carried out to evaluate the
effects of such cable of the tethered flight system on the dynamic characteristics of the multicopter.
The results indicate that as for a heavy-lift tethered multicopter designed to be utilized for rescue
operations, the properties of the power cable, such as weight, rigidity and length, have a major
impact on the position and attitude control performance.

Keywords: multicopter; heavy lift; tethered flight; flexible multi-body dynamics

1. Introduction

In contrast with the past when unmanned air vehicles (UAVs) were originally used for
military operations, such as reconnaissance or surveillance, they are now being proactively
employed for civilian purposes. You can easily find in reality a variety of cases where they
are put in use, ranging from drones for Amazon Prime Air delivery services in the US
which are capable of carrying an item less than 2.26 kgf, through unmanned aerial vehicles
from AeroVironment offering observation services and communication support at a fire
scene and Google’s SkyBender engaging in 5G wireless communication testing, to flying
autonomous robots developed by Tevel Aerobotics Technologies to grow fruits without any
wastes of human resources by selecting fruits of optimum quality based on their size and
conditions [1–4]. eVTOL (electric Vertical Takeoff and Landing) vehicles, including multi-
copters as most representative, are at the center of the situations where unmanned aerial
vehicles are being more widely used in the civil application. In particular, multicopters,
which are capable of hovering, have been utilized in more diverse areas. Existing heli-
copters can also hover and have the advantage of being superior to multicopters in terms
of payload capacity and endurance. However, they are mechanically complex because
they require mechanisms such as a transmission system to transmit the rotational motion
produced by turbine or piston engine to the rotor blades, and a swashplate for cyclic and
collective control. Most multicopters do not need additional transmission system because
each propeller is directly connected to the out-runner type BLDC motor. In addition, since
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every propeller has pair to rotate at the same speed in opposite directions, gyroscopic
precession caused by the spinning rotor can be neglected in many cases, and cyclic control
is not required as it has symmetrical aerodynamic characteristics. The forces for attitude
control are generated by changing the rotational speed of the motor. For those reasons,
multicopters do not have to use a swashplate and can carry out control commands more
frequently. It is also possible to guide a relatively safe landing even if one of their propellers
fails since most of multicopters has more than four propellers. Based on these advantages,
a research on space application of multicopter is also in progress. NASA Jet Propulsion
Laboratory (JPL), in collaboration with AeroVironment Inc., NASA Ames Research Center
and NASA Langley Research Center, has developed a vehicle capable of vertical take-off
and landing on Mars [5,6] as shown in Figure 1, and the vehicle has succeeded in several
flight tests on Mars. The Mars Helicopter, named Ingenuity, is an eVTOL vehicle equipped
with a coaxial rotor which is composed of two propellers rotating in opposite directions.
In order to reflect the difference in gravity between Earth and Mars during the flight test
of the demonstration model of Ingenuity, an electrical tether was used to supply power
from the ground while removing the battery [7,8]. The technological advancements of the
electrical propulsion system, such as propellers, electric motors and batteries, have led
to the recent development of large manned multicopters aimed to be integrated into the
Urban Air Mobility (UAM) ecosystem [9–11].
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to accommodate residential places or office spaces are more densely populated than low-
rise counterparts, they are likely to have relatively more severe damages when an accident 
or a fire breaks out, thus having various evacuation and preventive measures in place, 
including emergency staircase, emergency shelter or emergency lift. However, such evac-
uation and prevention measures may not cover all unexpected situations which leave 
some people stranded as they fail to promptly evacuate to a safe place, and generally a 
fire truck ladder directly accessible to the external wall of a high-rise building is used to 
rescue them. During the rescue operation of the people stranded at a high altitude using 
the aerial ladder, various restrictions are entailed [12]. A fire truck ladder consists of out-
riggers to hold the weight, a lift to carry people, an electric control system for the lift op-
eration and a safety system to respond to an emergency. Table 1 shows the safe opera-
tional conditions of the constituents of the fire truck ladder. As the ideal climbing angle 
of the aerial ladder for safe operation ranges from 30 to 70 degrees, it can be used to carry 
out a rescue mission within an altitude lower than the actual length of the ladder. In ad-
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Figure 1. Example of space application of multicopter: (a) illustration of Mars Helicopter Ingenuity [6]; (b) demonstration
model of Mars Helicopter powered through an electrical tether hanging below the vehicle during controlled-flight test [8].

Meanwhile, eVTOL sufficiently large enough to carry passengers is expected to be
effective in rescue operations in case of a fire or disaster. In the process of industrial
development, the urban concentration phenomenon, in which many people flock to the
city, has resulted in high-rise buildings being built in large cities. As skyscrapers built
mostly to accommodate residential places or office spaces are more densely populated than
low-rise counterparts, they are likely to have relatively more severe damages when an
accident or a fire breaks out, thus having various evacuation and preventive measures in
place, including emergency staircase, emergency shelter or emergency lift. However, such
evacuation and prevention measures may not cover all unexpected situations which leave
some people stranded as they fail to promptly evacuate to a safe place, and generally a fire
truck ladder directly accessible to the external wall of a high-rise building is used to rescue
them. During the rescue operation of the people stranded at a high altitude using the aerial
ladder, various restrictions are entailed [12]. A fire truck ladder consists of outriggers to
hold the weight, a lift to carry people, an electric control system for the lift operation and a
safety system to respond to an emergency. Table 1 shows the safe operational conditions of
the constituents of the fire truck ladder. As the ideal climbing angle of the aerial ladder for
safe operation ranges from 30 to 70 degrees, it can be used to carry out a rescue mission
within an altitude lower than the actual length of the ladder. In addition, a clearance should
be secured from the building where fire occurs depending on the climbing angle of the
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ladder, which determines its reachable height. Generally, a clearance of approx. 13.7 m
away from the external wall of the building is required to install an extension ladder as
long as 50 m, whereas a 70-m-long ladder, used only in some cases to reach a high altitude,
can have access to the height of up to approx. 64 m, which is about 24 story high given the
average floor height (approx. 2.6~2.8 m) of an apartment building. In a situation where
more skyscrapers with more than 30 stories are being built due to the above mentioned
growth in the urban population, it becomes inevitable in some cases for some people to
become trapped in a location higher than the height that the ladder can reach or impossible
to secure a clearance to install the ladder. eVTOL vehicle capable of transporting passengers
is deemed as an alternative solution to promptly rescue people.

Table 1. Safe operational conditions for elevated ladder of fire truck.

Components Operational Constraints

Loading vehicle Road slope < 5◦

Ground rigidity should be ensured

Outrigger
Maximum allowable load: 80 T

Deployment radius: 5.2 m
Deployment angle: −7◦~70◦

Lift
Working speed: 1 m/s

Ladder deployment angle: 30◦~−70◦

Ladder deployment length: 23~53.2 m

Regular eVTOL vehicles are not capable of executing a long-duration mission due to
limited battery capacity, but there were cases where a tethered flight system was developed
to overcome such limitation of flight time. UCON Systems developed T-Rotor for military
operations, and Israel Aerospace Industries (IAI) came up with Hover Mast in a joint
partnership with Sky Sapience. There are several products capable of tethered flight,
such as Elistair’s safe-T and Power Line of Network Time Protocole, which replace the
existing multicopters’ power system [13–15] which are shown in Figure 2. However, as
these tethered flight systems are used to provide electricity to and communicate with
multicopters of small size designed mostly for observation and communication relay, the
presence of power cable does not greatly affect the dynamic characteristics of multicopters.
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Weight and flexural rigidity of the power cable greatly changes depending on the
operating voltage and current. As tethered multicopters for rescue purposes should be
able to perform hovering flight with at least one passenger on board, there should be a
heavy-duty power cable installed to ensure stable power supply from the ground, which
generates a relatively large effect on flight dynamics brought by changes in the weight
and flexural rigidity of the cable. In order to analyze the flight dynamic characteristics
of a tethered multicopter, dynamics for each of the multicopter and the electric power
cable should be modeled. Giernacki et al. [16] obtained information such as geometric
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dimensions, masses and moment of inertial, which are major parameters of the equation
of motion, from the technical documentation provided by the multicopter manufacturer.
Ivler et al. [17] built a multicopter flight dynamics model close to reality by performing
system identification using actual flight test data. In relation to the dynamic character-
istics of the tethered system, various studies have been carried out especially for space
applications. Aslanov et al. [18] conducted a study to identify the dynamic characteristics
based on mathematical modeling of the space tethered system, which collectively refers to
applications such as space escalator, space elevator, lifting and descent of a payload into
an orbit and placing a spacecraft into orbit. Misra et al. [19] studied the transverse and
longitudinal vibration of sub-satellite tethered to the space shuttle. Based on the modeling
of the tether elevator system installed on both sides of the space station, Lorenzini et al. [20]
investigated the dynamics of the space elevator to maintain the center of mass of the entire
system within the space station by controlling the length change of a tether while the
elevator is operated on the other tether. Williams et al. examined the influence of thermal
induced flexibility change of tether on tethered aerocapture missions [21]. They constructed
two temperature-dependent dynamics models of the tether based on Lagrange’s equation
and Kane’s equation, respectively. Through numerical simulations, it was confirmed that
the longitudinal stiffness of the tether has a significant effect on the maneuver of the en-
tire system. There have been several studies on helicopters or multicopters with slung
load [22–24], of which configurations are similar to tethered multicopters, but most studies
were conducted on applications where the effects of mass and flexural rigidity of cables
could be neglected.

This study analyzed restrictions integrated in the design of tethered multicopters for
rescue mission, which require a heavy and thick power cable, to identify the requirements
of the tethered flight system and the power cable. Based on the mechanical properties of
the power cable obtained from bending tests, a flexible multi-body dynamics modeling
was conducted on tethered multicopter with a power cable. Later, a simulation for position
and attitude control was carried out, based on a model where the power cable of differ-
ent lengths depending on the flight altitude was integrated, to observe change in flight
dynamics of the multicopter.

2. Design of Heavy-Lift Tethered Multicopter
2.1. Mission Profile

Multicopters can be used to perform lifesaving missions in areas inaccessible to fire-
fighting ladders or where there are restrictions on the deployment of elevated ladders.
However, the battery-equipped multicopter has a relatively short endurance due to limited
battery capacity, so it cannot reliably perform rescue missions for a long time. The size
of multicopter should be suitable for lifesaving operations without causing an accident
and interfering with the performance of other workers’ missions after arriving at the
site regardless of the method of transport to the fire or disaster site. In addition, it is
required to guarantee good flight performance in various conditions such as ascending
flight for approach, hovering while on board and descending flight for landing during
rescue missions. Figure 3 shows the operational process of a tethered multicopter for rescue
purposes. Once an emergency is reported, fire trucks and multicopters are immediately
dispatched to the emergency site. After arriving at the fire site, a safety space of a certain
size necessary for multicopter take-off and landing must be secured. Once the safety space
is secured, the conditions and location of stranded people should be identified in detail.
When the detailed information is obtained, the heavy-lift tethered multicopter should start
its flight for rescue mission. It has to hold not only its position to hover around the contact
point, but also its attitude angles even when there exists weight shift while rescued person
is boarding. After the multicopter safely lands on the truck and unloading the rescued
person, it continues the rescue operation repeatedly until there are no people left in the
building. After the execution of such a mission, the power supply system and the entire
multicopter as well as its equipment should be checked, and in case repairs are required,
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they should be carried out in line with the proper procedures with maintenance being
conducted on a regular basis [25,26].
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Figure 3. Mission profile of heavy-lift tethered multicopter for lifesaving mission.

2.2. Analysis on Design Constraints
2.2.1. Size Constraints

A tethered multicopter is required to rapidly move to a site where fire or disaster
occurs to execute a rescue operation. There are two ways for them to move to the scene:
first, they fly to the site directly and connect to on-site infrastructure, such as a fire hydrant
or streetlamp, to be supplied electric power from ground for tethered flight. Second,
they are loaded onto an existing automotive vehicle, retrofitted for this purpose, to be
transported to the site. As multicopters have autonomous flight capability, they are able to
move quickly to the scene unaffected by the traffic conditions without any assistance of an
additional loading vehicle. However, this requires the establishment of infrastructure, as a
precondition, that includes a power supply system near high-rise building, a traffic control
system and spatial information of downtown areas required for flights of large eVTOL in
the urban area. The second way of moving the tethered multicopter to the scene which
involves a loading vehicle has its limitation as it is affected by traffic conditions and may
result in belated arrival, but there is an upside as well in that the loading vehicle can carry
the power supply system and equipment for the mission as well as additional devices,
guaranteeing stable execution of the operation. As a result, it is concluded that transporting
the multicopter tethered to the loading vehicle is more effective than direct flight to a fire
or disaster site, and if it is designed in a size enough to be loaded onto a fire truck with
water pump dispatched to a fire scene, it will be easily transported on the road. Table 2
shows a list of overall length, width and height of each size of generally used fire trucks
with water pump. Considering the expected size of a multicopter that can lift at least one
person and the applicability in cramped urban areas, the frame width and length of the
multicopter are decided as 1800 mm and 2400 mm, respectively. This size of multicopter
allows the small fire pump car can be retrofitted to load the tethered multicopter.

2.2.2. Weight Constraints

As multicopters for rescue purposes should be able to take off and land vertically with
passengers on board, they should share similar capabilities with eVTOL vehicles that are
being developed to be integrated into UAM ecosystem. eVTOL vehicles to be incorporated
into the UAM ecosystem is classified as the following three categories: vectored thrust,
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lift-cruise and multicopter. In case of the vectored thrust and lift-cruise types, which are
capable of vertical take-off/landing and long-range cruise flight, they need an additional
fixed wing structure as well as additional mechanisms for propulsion system. As for
rescue missions at a fire site which require repeated vertical take-offs and landings while
receiving electricity from the power cable within a limited range, without cruise flight, the
multicopter type is most suitable. Table 3 shows the specifications of UAM vehicles of
multicopter type that are currently being developed. Among them, Ehang 184, a vehicle
whose performance was verified in numerous flight tests and which is of relatively simple
structure, was chosen as a reference to analyze the weight-related constraints of tethered
multicopters for rescue missions.

Table 2. Size of various types of fire pump car.

Type Length (mm) Width (mm) Height (mm)

Large 8500 2500 3400
Medium 8000 2500 3200

Small 6800 1900 2800
Light 5200 1200 2800

Table 3. Specifications of multicopter type heavy-lift eVTOL.

Manufacturer Ehang Airbus Volocopter

Model
Ehang 184 City Airbus 2X
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the battery loaded in Ehang 184 is known to be 14.4 kWh, and when the weight energy 
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Size (m) 4 × 3.9 × 1.4 8 × 8 3.2 × 9.15 × 2.15
MTOW (kgf) 360 2200 450
Payload (kgf) 100 250 150

As the tethered multicopters receive power from the ground via power cable, battery
can be removed from the vehicle and the tethered flight system can be loaded as much as
the weight of the battery. Ehang 184 is known to use a lithium-based secondary battery,
which widely powers various electric mobilities because it has relatively high energy and
power density, long life expectancy and excellent temperature stability. The capacity of the
battery loaded in Ehang 184 is known to be 14.4 kWh, and when the weight energy density
of a small lithium-ion battery of about 117 wh/kgf is applied, the weight of the battery
can be estimated to be about 123 kgf [27–29]. Accordingly, the total weight of the mooring
flight system including the weight of the power cable that changes in proportion to the
flight altitude should not exceed 123 kgf at the maximum flight altitude.

2.2.3. Initial Design of Tethered Flight System

For the flight of a tethered multicopter for rescue purposes, electrical power should
be supplied to the electric propulsion system via power cable, and the size of the current
flowing through the power cable varies depending on the size of the supplied voltage.
Assuming that the power consumption during hovering flight is about 57.8 kW, the same
amount to that of Ehang 184, a current of about 480 A must be transmitted through the
power cable from the ground with DC power of 120 V. The weight per unit length of the
power cable, in this case, is estimated to be about 1.5 kgf/m to meet IEC 60,227 standard.
While a couple of power cables are required for DC powe supply, the maximum length of
the cable is about 40 m if the weight of the existing battery is all converted into the weight
of the power cable. This concludes that it is impossible to perform the rescue mission at a
higher altitude compared to the existing fire truck ladder.
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Since the weight of the power cables per unit length depends on the current that runs
through them, the supplied voltage should be increased to deliver same amount of electric
power. For many power transmission applications, three-phase four-wire AC scheme is
adopted to minimize electric current and increase transmission efficiency. The weight of
the power cable per unit length can also be reduced with this scheme. Meanwhile, as
they should be flame-retardant because they are used at a fire site, HF-CO, TFR-CV and
TFR-8 cables, which are widely used for high supply voltage and temperature applications,
can be used for this purpose. The weights per unit length of HF-CO, TFR-CV and TFR-
8 cables were measured as 0.78 kgf/m, 0.79 kgf/m and 0.83 kgf/m, respectively, and
Figure 4 indicates the maximum ceiling of the tethered multicopter with those power
cables depending on the weight of an AC/DC converter to be loaded onto the airframe.
600 V was considered as the supply voltage for the three-phase and four-wire system.
When the weight of the AC/DC converter of the tethered flight system is 50 kgf [30], the
ceiling altitude according to the application of HF-CO, TFR-CV and TFR-CV is calculated
as 94 m, 93 m and 88 m, respectively.
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The layout of the tethered multicopter for rescue purposes in consideration of the
above restrictions relevant to the size and weight is shown in Figure 5. At the bottom
of the loading space of the small fire pump car, there should be a power supply system
with a capacity of 100 kW as well as a winch that adjusts the length of the power cables
depending on the flight altitude, and the airframe should include the AC/DC converter
that properly distributes electricity from the three-phase four-wire AC power source to
each BLDC motor, and flight control systems.
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3. Flexible Multi-Body Dynamics Simulation of Heavy-Lift Tethered Multicopter
3.1. Mechanical Properties of Power Cable

The weight and flexural rigidity of the power cable, one of the main components of
the tethered flight system, can have a significant effect on the dynamic characteristics of the
heavy-lift tethered multicopter. It is required to identify the weight and flexural rigidity
of the power cables for dynamics modeling of the tethered multicopter, and especially, it
is extremely difficult to theoretically evaluate the flexural rigidity of the cables made of
complex materials, including conductor, insulator, binder tape and sheath. To estimate the
flexural rigidity of the cables in an experiment, a bending test on cantilever structures built
with power cables were carried out as shown in Figure 6.
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To calculate the equivalent flexural rigidity of the cables based on the test results, the
cables were assumed to be made of isotropic material, and the correlation between the
applied load and the free end displacement as shown in Equation (1) was used.

δ =
FL3

3(EI)eq
(1)

δ referes to the free end displacement, F is the applied load on the free end, L is
the length of the power cable and (EI)eq means the equivalent flexural rigidity of the
power cables. In order to reduce errors due to clearance, storage conditions and cutting
methods while preparing the specimen, bending tests were carried out repeatedly with
multiple specimens.

3.1.1. Static Bending Test

In order to proceed the bending tests, four specimens for each type of power wire of
HF-CO, TFR-CV and TFR-8 were prepared, and the detailed specifications of each specimen
are shown in Table 4. After clamping a power cable specimen as a cantilever, a laser sensor
was located to measure the free end displacement. Balance weights were used to apply
load at the free end of the specimen. The free end displacement for each applied load was
measured after it converged to a certain value.

Table 4. Dimensions of power cable specimen.

Cable Type Length (mm) Diameter (mm) Weight Per Unit
Length (kgf/m)

HF-CO 400 17 0.78
TFR-CV 400 17 0.79
TFR-8 400 20 0.83

Figures 7–9 show the relationship between the free end displacement and the applied
load, and the calculated equivalent flexural rigidity for each type of power cable. The coef-
ficients of determination of each bending test with HF-CO, TFR-CV and TFR-8 cables were
calculated as 0.998, 0.996 and 0.996, respectively. It shows that structural characteristics of
power cables are linear. Table 5 summarizes the equivalent flexural rigidity of each power
cable calculated from the experimental results. Even though the dimensions and electrical
characteristics of the power cables are similar, the equivalent flexural rigidity may vary
depending on the cable type. It can be expected that the dynamic characteristics of the
heavy-lift tethered multicopter, based on the above results, are significantly affected by the
types of power cable applied for the electric power transmission.

Table 5. Equivalent flexural rigidity for various types of electric power cable.

Cable Type Equivalent Flexural Rigidity (Nm2) Standard Deviation (Nm2)

HF-CO 9.74 0.48
TFR-CV 5.66 0.42
TFR-8 2.53 0.13
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3.1.2. Consideration of Viscoelasticity

As mentioned above, it takes several minutes for the level of displacement to converge
to a certain value after a balance weight is applied on the free end of the power cable. It
may be attributed to creep, which leads to an assumption that power cables are made
of viscoelastic materials. Once a load is applied on a viscoelastic material, an elasticity-
induced displacement is immediately observed and subsequently a displacement triggered
by viscosity starts to be slowly created. To generate a model of such viscoelastic material,
one of the following models is usually utilized: Maxwell model, Kelvin-Voigt model, Zener
model and Burgers model [31,32]. Maxwell model, which consists of linear spring and
linear viscous dashpot, is adopted in this study to estimate the flexural rigidity of the power
cables in a more accurate manner and the formula used is shown below in Equation (2)

dε

dt
=

1
E

dσ

dt
+

σ

η
(2)

where ε means strain, η refers to viscosity, which could change depending on various
factors, such as temperatures and the conditions of the power cable specimen.

Viscosity can be expressed as a damping coefficient of a power cable by expressing
Equation (2), which is a relational expression between stress and strain, as a relation
between force and displacement. In order to consider the viscoelasticity of the power
cable, the change in the displacement according to the application of the free end load
was measured in time domain. Figure 10 shows the change in the displacement of a
TFR-CV specimen; balance weight of 100 gf was applied and removed at about 5 min,
and 15 min, respectively, after the measurement was started. δk is the displacement made
by the linear spring, whereas δη means the displacement triggered by the linear viscous
dashpot. The equivalent flexural rigidities obtained through the previous static bending
tests were the result of adding the displacement by the linear spring and the linear viscous
dashpot. Therefore, if the equivalent flexural rigidity of the power cable is more accurately
calculated by considering only the displacement caused by the linear spring excluding the
linear viscous dashpot, a larger value will be obtained than the result measured through
the static bending test. According to the maxwell model, the section in which displacement
due to the viscous dashpot is observed can be assumed as a first-order linear function as
shown in Figure 11.
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Table 6 summarizes the results of measuring the maximum displacement and perma-
nent displacement for each TFR-CV specimen. By applying the linear Maxwell model to
the results, the damping coefficient and the equivalent flexural rigidity of TFR-CV were
calculated as 6.5 × 105 Ns/m and 7.14 Nm2, respectively. Considering the creep effect, the
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updated equivalent flexural rigidity is about 2.5 times larger than the previous result. It
can be seen that the flexural rigidity of the heavy-duty power cable measured by a static
bending test is accompanied by a large error, and it is necessary to perform a bending test
considering viscoelasticity in order to obtain more sophisticated structural model of the
power cable.
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Table 6. Displacement due to linear spring and linear viscous dashpot effect of TFR-CV specimen.

Measured Displacements No. 1 No. 2 No. 3 No. 4

Maximum displacement (δk + δη) [mm] 2.53 2.67 2.72 2.51
Permanent displacement (δη) [mm] 1.57 1.88 1.77 1.62

3.2. Position and Attitude Control Simulation of Tethered Multicopter
3.2.1. Flexible Multi-Body Dynamics Modeling

Using the mechanical properties of the power cable that consist of the tethered flight
system, a multi body dynamics model can be constructed. The motion of the power
cable can be analyzed with the Euler-Bernoulli beam theory if the bending displacement
of the power cable is small. In case of large bending displacement is expected, however,
pseudo-rigid-body method, elliptic integral solution, domain decomposition method, chain
algorithm or circle-arc method are used for mathematical modeling [33,34]. The properties
of the power cables obtained in the previous test were used to create DEM (Discrete Element
Model), composed of multiple links and springs, by dividing the entire power cables into n
parts as shown in Figure 12.
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Assuming that the angular change of the torsion spring exists within the linear range,
the moment of the torsion spring Mi can be expressed as Equation (3) while satisfy the
following condition, i ≤ n.

Mi = ki(θi − θi−1) (3)
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As the cantilever bending test was conducted in static, the linkage-spring model also
should be in a static state. Equation (3) can be adopted to calculate the moment taken for
each linkage as shown in Equation (4).

Fli = Mi − Mi+1 (4)

By assuming that kn is an equivalent spring constant of the cantilever divided into
n equal parts, the free end displacement of the linkage-spring model can be estimated as
Equation (5).

δ = δ1 + δ2 + · · ·+ δn =
FL2

t
kn

(
1
n2

)(
n(n + 1)(2n + 1)

6

)
(5)

Since the free end displacement of the cantilever obtained from Equation (1) matches
with Equation (5), the equivalent spring constant of the linkage-spring model can be
calculated as shown in Equation (6).

kn =
(n + 1)(2n + 1)

2n

(EI)eq

Lt
(6)

Using the damping coefficient derived from Equation (2) and the equivalent spring
constant derived from Equation (6), structural model of the power cable was obtained.
In addition, the power cable model is combined with the flight dynamics model of a
multicopter to construct the flexible multi-body dynamics model of a heavy-lift tethered
multicopter as shown in Figure 13a. To analyze the altitude control and roll attitude control
command-following performance of the tethered multicopter for various conditions, a
flexible multi-body dynamics simulation was performed using MATLAB Simulink and
RecurDyn which is commercial CAE software focused on multibody dynamics. Since it was
difficult to obtain various parameters required to perform dynamic simulation of heavy-
lift multicopter, the dynamic modeling of the multicopter part was relatively simplified
compared to the electric power cable part. For mass and moment of inertia arranged in
Table 7, values roughly estimated from the results of 3D modeling using the published
specifications of Ehang 184 were used, and the effect of viscous friction or drag due to air
flows was assumed to be negligible while performing simulations in conditions close to
hovering. The maximum thrust that each of the eight propellers installed in the multicopter
could produce was calculated by dividing the thrust equal to twice the maximum take-off
weight by 8, the number of propellers. The power cable was divided into 10 linkages, and
each couple of linkages were connected by a revolute joint to limit its motion within a plane.
A torsional spring was added on each revolute joint and its equivalent torsional spring
constant was calculated by substituting the flexural rigidity of the power cable, which was
obtained from the previous test, into Equation (6).

3.2.2. Position and Attitude Control Simulation

An environment as shown in Figure 13b was created to simulate position and attitude
control of the tethered multicopter with power cables consisting of multiple links and
springs. Feedback control simulation was performed on roll, pitch, yaw attitude and alti-
tude of the multicopter by importing the flexible multi-body dynamics model to MATLAB
simulink while independent PID control scheme was employed for each degree of freedom.
Two flight altitude conditions of 5 m and 90 m were selected to observe the change of
dynamic characteristics according to the flight altitude of the tethered multicopter. The
simulations were conducted with two torsional spring constants of TFR-CV, knominal and
kMaxwell , in order to confirm that the correct flexural rigidity of the power cable should be
used when the dynamics model of the heavy-lift tethered multicopter is constructed.

The flight altitude control of the multicopter is achieved through the overall in-
crease/decrease of the thrust generated by each rotor, so it is possible to minimize the
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effect of flexural rigidity of the power cable due to the change in the attitude angle of
the multicopter during altitude control simulation. As shown in Figure 14, there were no
significant difference in command following performances according to the torsional spring
constant of the power cable while the overall performance in the low altitude condition is
superior to that in the high-altitude condition. This is thought to be due to the fact that
the weight of the entire vehicle was increased by the power cable suspended under the
multicopter in case of high-altitude conditions.
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Table 7. Mass and moment of inertia of the heavy-lift multicopter without electric power cable.

Mass (kg) Moment of Inertia (kg mm2)

m = 137
Ixx = 3.30 × 109 Ixy = 7.39 × 103

Iyy = 4.88 × 109 Iyz = −6.65 × 102

Izz = 4.39 × 109 Izx = −5.86 × 102
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The result of comparing the roll attitude control performance is shown in Figure 15. It
is confirmed that the roll attitude control performance is slightly worse at high altitude
conditions, which is thought to be due to the difference in the weight of the power cable.
However, in case of the horizontal direction, a larger motion was observed in the high-
altitude condition than in the low altitude condition even though it was caused by the same
roll attitude maneuver. This difference in horizontal movement according to the flight
altitude is attributed to the length of power cable because the cable ties the multicopter to
the ground when it is fully stretched as shown in Figure 16.
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Meanwhile, significant effect of the flexural rigidity of the power cable on the horizon-
tal motion is observed at low altitude condition in contrast with at high altitude condition.
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For more detailed analysis, simulations with the same roll command were conducted
at flight altitudes of 2.5 m, 3.5 m and 4.5 m. As shown in Figure 17, there are relevant
differences in horizontal motion with the same roll attitude maneuver despite the short
altitude change. It can be concluded again that the flexural rigidity of heavy-duty power
cable should be considered to obtain high control performance during take-off and landing
at low altitudes.
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4. Conclusions

When people are isolated at the scene of a fire in a high-rise building in an urban area,
rescue is usually carried out by means of a fire truck with elevated ladder. However, in
situations where it is impossible to secure the required space for operation of the elevated
ladder or when people are isolated at a higher position than the elevated ladder can reach,
other effective countermeasures are required for lifesaving and heavy-lift multicopters
which can vertically take-off and landing with people on board could be one of the alterna-
tives. Typical multicopters are not suitable for long-term missions due to limited battery
capacity, but if a tethered flight system that transmits electric power from ground through
power cable is applied, lifesaving missions can be performed with the multicopter at a
high-rise building fire site regardless of endurance. In this study, a feasibility study was
performed on whether it is possible to deploy tethered multicopters for a rescue mission at
urban fire sites. The size and weight constraints were derived based on the mission profile
of the heavy-lift tethered multicopter, and the initial design of the tethered flight system
was conducted to meet the requirements. Since it is possible for the tethered multicopter to
remove the battery, it can load tethered flight system as heavy as the weight of the existing
battery. The heavy-duty power cable occupies most of the weight of the tethered flight
system, and three-phase four-wire AC system with high supply voltage should be applied
to minimize the weight of the power cable. Given the above conditions, it is estimated that
the tethered multicopter can climb up to more than 90 m if the electric power is supplied
with the voltage of 600 V. The power cables that should transmit high power have high
flexural rigidity and heavy weight per unit length. If one of those cables is attached under
a multicopter, it can significantly affect position and attitude control performances of the
vehicle. Flexible multi-body dynamics simulations were conducted to observe the change
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in dynamic behavior according to the flight altitude, and the equivalent flexural rigidity of
the power cable made of various complex materials was experimentally measured consid-
ering viscoelastic effect. The obtained flexural rigidity was used for structural modeling of
the cable. According to the simulation results, the weight effect of the power cable was
significant at high altitude condition while the flexural rigidity affected the vertical and
horizontal motion a lot at low altitude condition. In particular, the low altitude condition is
closely related with take-off and landing of the multicopter, and high accuracy position
control performance is required for safe operation. In order to improve the position and
attitude control performance of the heavy-lift tethered multicopter for lifesaving mission,
gain scheduling or adaptive control scheme that can take into account the weight change
for various altitude and flexural rigidity effect of the power cable at low altitude should
be applied for its flight control system, and the performances of these control algorithms
can be comparatively evaluated through feedback control simulations using the flight
dynamics model obtained previously. Furthermore, the methodology used in this study is
expected to be utilized to analyze the dynamic characteristics of space tethered systems
and design control systems of them.
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