Journal of Materials Science Research and Reviews

Journal of Materials Science Research and Reviews

6(3): 39-45, 2020; Article no.JMSRR.62221

The Use of Pineapple Fiber Composites for Automotive Applications: A Short Review

J. Sangilimuthukumar¹, T. Senthil Muthu Kumar^{1*}, Carlo Santulli², M. Chandrasekar³, K. Senthilkumar⁴ and Suchart Siengchin⁵

¹Department of Automobile Engineering, Kalasalingam Academy of Research and Education, Krishnankoil–626126, Tamil Nadu, India.

²School of Science and Technology, Università di Camerino, Geology Section, 62032 Camerino, Italy.

³School of Aeronautical Sciences, Hindustan Institute of Technology and Science, Padur,

Kelambakkam, Chennai, Tamil Nadu 603103, India.

⁴Center of Innovation in Design and Engineering for Manufacturing (CoI-DEM), King Mongkut's University of Technology North Bangkok, 1518 Wongsawang Road, Bangsue, Bangkok 10800,

⁵Department of Mechanical and Process Engineering, The Sirindhorn Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok, 1518 Wongsawang Road, Bangsue, Bangkok 10800, Thailand.

Authors' contributions

This work was carried out in collaboration among all authors. Author JS collected literature. Author TSMK focused the collection of data. Author CS revised the work and refined the writing. Authors MC, KS and SS provided supervision to the work's structure and offered feedback. All authors read and approved the final manuscript.

Article Information

Editor(s):

(1) Dr. Serkan Islak, Kastamonu University, Turkey.

Reviewers:

(1) Godwin Anwara Ibe, Akanu Ibiam Federal Polytechnic Unwana, Nigeria.
(2) Antonio L. Beraldo, Campinas University, Brazil.

Complete Peer review History: http://www.sdiarticle4.com/review-history/62221

Mini-review Article

Received 08 August 2020 Accepted 13 October 2020 Published 30 October 2020

ABSTRACT

Pineapple leaf fibers (PALF), as the part of a large productive system, based on the availability of fruits for the food industry, offer a large amount of possibilities in term of use of the fibers, which are almost exclusively dedicated to the field of materials, as the reinforcement of polymer matrices, either traditional oil-based ones or biodegradable ones. Pineapple fibers, due to their suitability to textile use, can be introduced into composites not only in the form of short fiber, although the latter remains the most frequent case. As the consequence of this, they are also of interest of the

automotive industry, an interest, which is steadily and rapidly growing especially in the last few years. This review tries to elucidate what are the characteristics of pineapple fibers that are particularly important for the automotive industry together with trying to clarify which could be the possibilities in the next future for their wider introduction in this sector.

Keywords: Pineapple leaf fibers; automotive composites; biodegradable matrices.

1. INTRODUCTION

Pineapple (Ananas comosus), a perennial plant, is a member of Bromeliaceae family. It is mainly cultivated for their fruits, a production that is deemed to reach 31 million tones worldwide by 2028 with an average increase of 1.9% [1]. Pineapple leaf fibers (PALF) are normally separated by stripping and decortication, taking care of maintaining them as straight as possible. More recently, as far as short fibers are concerned. also milling methods considered to increase the yield of these fibers, which appear still underused so far [2]. Following this process, they are soaked in water like flax and hemp for the retting process. Pineapple leaf is normally considered as a waste in horticulture and is not used for any purpose: only recently, characterization of leaves from various cultivars has been carried out [3]. Large amounts of pineapple leaf strands are being created, however only small market segments are being utilized in the field of feedstock and energy creation. Therefore, the extension of use of biocomposites has suggested enhanced mechanical use of fibers such as PALF, to elucidate the potential outcomes of this procedure [4]. The limit for application of PALF in composites with traditional non-biodegradable polymer matrices is their high cellulose content, which was measured to be in the region of 81%, the remainder being mainly formed by hemicellulose, which is dissolved by alkali bleaching, with no more that 3% lignin [5]. This indicates that PALF needs to be treated to provide a sound interface with polymer matrices, especially with oil-synthesized ones. Treatments providing an adequate coverage and protection of fibers, such as the one with silanes, reduce revealed to further hydrophilic characteristics with respect to alkali removal of loose matter and unstable hemicellulose [6].

Thinking of applying PALF as the reinforcement of polymer composites, it is of paramount importance to consider the most widespread matrices for use in that sector, alongside with the fabrication techniques that are employed for composite manufacturing. In automotive interior parts, but also in some parts of the body, such as bumpers, polypropylene (PP) matrices have been used for decades. Some recent works tend to consider also the possibility to use natural fibers, such as non-woven flax, hemp or kenaf, as the reinforcement for PP, also in view of obtaining more dampened structures [7]. The application of other natural fibers has also been attempted in combination with polypropylene on automotive composites, which are obtained as a by-product from the food sector, such as blue agave bagasse [8]. As it is common in the combination of PP with natural fibers, the matrix has been grafted with maleic anhydride, procedure matrix-specific to improve compatibility with ligno-cellulosic materials, also in the automotive sector e.g., for coir-PP composites [9].

However, also in the case of automotive composites, while the use of PP as the matrix appears the most common solution, other ways have been experimented. In particular, on the two extremes, the use of traditional thermosetting matrices and the use of biodegradable ones have been experimented in combination with natural fibers.

In the case of thermosetting matrices, which are typically used for some components in the automobile, such as armrest, the number of species of natural fibers available is so wide that also method to try to automatize their selection has also been experimented [10]. More recently, the introduction of biodegradable matrices also produces appreciable results in combination with natural fibers. This applied particularly applicable in the so called semi-structural parts, such as dashboard panels, which are not deemed to survive to a serious car accident, but only to provide a safe mode of fracture without any sharp elements: in [11] for this aim a nettle-poly (lactic acid) composite was proposed.

The above considerations suggest that there is space for more reviews on use of natural fiber composites in the automotive field, updating data and information already shown by some classical

work, such as [12], where the emphasis is put on the possibility to obtain Class A finishing also using natural fibers. This need for more updated reviews is especially true for the overwhelming development of this sector in the last decade or so. In particular, there are fibers, such as pineapple leaf ones, which have been underused so far and that on the other side were indicated already to possess a considerable potential, on which this work concentrates.

2. PINEAPPLE FIBER (PALF) COMPOSITES

For this review, hybrid composites of pineapple fibers with other natural or glass fibers are purposely only mentioned, since the main idea is related to the possible use of bare PALF composites in the automotive sector. However, some works on hybrids are of particular interest, especially because they aim to increase the global amount of reinforcement introduced in the polymer matrix. This is especially true for the ternary hybrid between glass, jute and pineapple fibers presented in [13]. Here, a considerable increase of flexural performance was obtained by increasing the global amount of fibers, in equal proportion between the three reinforcements, up to 42 vol.%. Another typical coupling of pineapple fibers is the already mentioned with kenaf fibers, on which also global studies involving other than thermal and dynamical mechanical properties also flammability assessment have performed [14]. Other combinations, limited always by the typical arrangement of PALF as short fibers, are for example with coir. with the idea of exploiting their respectively high lignin, for coir, and cellulose, for PALF, to obtain an intermediate effect [15]. Even more specific and somehow unusual uses have been proposed, in the view of introducing different natural waste in the composite, such as the one with chopstick refuse, in biodegradable poly(butylsuccinate) (PBS) matrix [16].

To concentrate further on data of interest for the issue, as in every situation that involves the introduction of new filler in composites, it can be observed that the initial studies concentrated on assessing the maximum amount of filler that produces a beneficial effect on the matrix performance. As for other natural fibers, also for pineapple the possibility of investigating hybridization with glass fibers was considered. In particular, intimate mixing between short glass (50 mm) and pineapple fibers (30 mm) in polyester composites, based on a global content of 30% by volume of fibers, provided evidence of a wide variability of results [17]. Normally, the first indication provided from composites in mechanical terms, comes from tensile testing. In Table 1 comparative tensile data from different PALF reinforced composites are reported [17-21]. When in the same study different values have been obtained for various PALF amounts, those yielding the highest tensile strength are solely reported. Different matrices have been used and another significant factor also linked is the length of fibers possibly obtained.

Other properties. which are particularly noteworthy in the case of possible automotive applications, are flexural and impact properties. Flexural performance decreased with water uptake in poly(ethylene)-PALF composites with up to 30 wt. fibers, considering also that water absorption is higher for increasing amounts of fibers, while a lower, yet still significant, negative effect is reported from ultraviolet (UV) light [22]. A considerable improvement has been observed in terms of flexural stiffness, which has been evaluated to 2.3 times the pure polyester matrix for a 30 wt.% of pineapple fibers [23]: the same study evidenced that work of fracture under impact of the same composite was 24 kJ/m². This is even superior to what observed in a typical fiberglass with polypropylene matrix for automotive use, again with 30 wt.% fibers, where a value of 17.1 kJ/m² for unnotched Charpy impact work of fracture has been reported [24].

Table 1. Tensile tests results

Matrix	Amount of PALF fibers	Tensile strength (MPa)	Tensile modulus (MPa)	Ref.
Polyester	30% vol.	65	2732	[17]
Polypropylene	10.8% vol.	37.3	687	[18]
Soy flour	30 wt% (compatibilised)	33	5000	[19]
Poly(hydroxybutyrate- co-valerate (PHBV)	30 wt.%	55.83	2255	[20]
Polycarbonate	20 wt.% bleached	68	1900	[21]

3. USE OF PINEAPPLE LEAF FIBER (PALF) COMPOSITES IN THE AUTOMOTIVE SECTOR

As discussed above, the application of PALF composites in the automotive sector can be promising. Advantages can be their high cellulose content, therefore relatively high compatibility with biodegradable matrices, but also with maleic-anhydride grafted PP, and their sufficient mechanical and impact performance. On the other side, PALF are normally used as short fibers, while textile products are not easily available, which reduces globally the amount of reinforcement possibly introduced in composite. In general terms, they need to adapt to the manufacturing processes applied in the automotive industry, also as regards thickness regularity and joining to the other parts of the automobile [25].

The process for extraction of pineapple fibers from the leaf is very well consolidated. This is obtained by three-roll scrapping followed by retting in urea or diammonium phosphate (DAP) solutions, then thorough washing and subsequent drying [26]. Alkali treatment can allow obtaining relatively high length of fibers (186 mm) and getting of their introduction in amount of up to 40 wt.% in the composite with increased tensile strength and stiffness [27]. After this, in terms of yarns for textiles, their preparation with methods applied for jute proved

possible, despite the different diameter of pineapple fibers [28]. In particular, yarns of 90 tex linear density with around 0.35 mm diameters were obtained, though with a very low fiber yield after retting, not reaching 3%. The limited yield issue can be overturn though by the presence of large amounts of by products, such as pulp, fertilizers, etc. [29].

In automotive composites, in the last few years, in view of the low cost and high environmental friendliness of natural fibers, these are increasingly proposed with a rapid vet intense momentum [30]. In particular, the use of PALF has been proposed and prototyped in a number of pieces, starting from the more typical ones, in particular dashboards, seat backs, door panels, spare tire and boot linings [31]. After this, other products have been proposed, which always belong to the semi-structural sector, spreading also from paneling to the engine insulation and cover, oil filter housing and to the electrical protection parts, and even to bumpers, where requirements impact-resistance are significant: a complete list is offered in [32]. Even more importantly, trying to obtain information on the possible structural application of PALF composites e.g., for bumpers, also modeling of failure modes has been attempted at different impact velocities [33]. Data relative to the location of maximum displacement in the bumper are reported in Fig. 1, while this is compared against velocity in Fig. 2. Another study focused

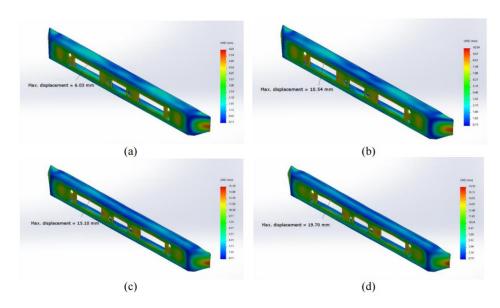


Fig. 1. The location of max. displacements of a bumper in PALF reinforced composite at a) 40 km/h, b) 70 km/h, c) 100 km/h, and d) 130 km/h [33]

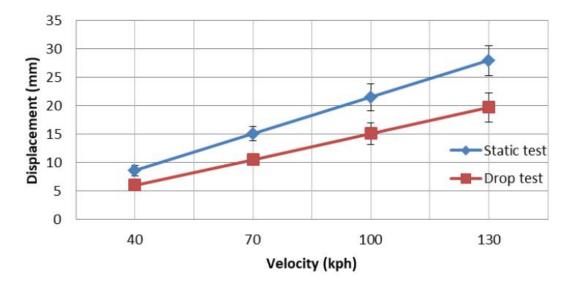


Fig. 2. Maximum displacement vs. velocity in the PALF reinforced composite bumper [33]

on comparing friction properties of Kevlar with PALF thermosetting composites, in the view of non-asbestos materials for automotive industry, obtaining comparable results with 5 wt.% of either fiber [34].

Despite this interest, it is very important to try to compare the different possible options as for natural fibers, as it is suggested that they can be possibly used in the same element of the automobile in different situations e.g., due to price variations, seasonality, factory location, etc. This originated the need for automatized selection based on the different values for mechanical and impact performance of side intrusion beam in composites manufactured with different natural fibers [35].

4. CONCLUSIONS

Pineapple leaf fiber (PALF) is a by-product of a large food-based productive system. Their high cellulose content, very low cost and relatively lightweight, with a density around 1.4-1.5, is increasingly suggesting application composites. The automotive sector, on the other is trying to replace traditional reinforcements, such as particularly glass, with natural fibers. PALF is an obvious candidate, which can be also shaped into yarns and potentially in textile products for composites. The short review here exposed tries to summarize the rapidly growing interest for pineapple fibers in this field, suggesting that this can be predicted to be much larger in the years to come.

ACKNOWLEDGEMENTS

The contribution of all authors is acknowledged. No other personnel were involved in this work.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

- FAO. Medium-term outlook: Prospects for global production and trade in bananas and tropical fruits 2019 to 2028. Rome; 2020.
- Kengkhetkit N, Amornsakchai T, Utilisation of pineapple leaf waste for plastic reinforcement: 1. A novel extraction method for short pineapple leaf fiber, Industrial Crops and Products. 2012;40: 55-61.
- 3. Mohamed AR, Sapuan SM, Shahjahan M, Khalina A, Characterization of pineapple leaf fibers from selected Malaysian cultivar, Journal of Food, Agriculture & Environment. 2009;7(1):235-240.
- Mishra S, Mohanty AK, Drzal LT, Misra M, Hinrichsen G, A review on pineapple leaf fibers, sisal fibers and their biocomposites. Macromolecular Materials and Engineering. 2003;289(11):955-974.
- 5. Cherian NM, Leão AL, Ferreira de Souza S, Thomas S, Pothan LA, Kottaisamy M, Isolation of nanocellulose from pineapple

- leaf fibres by steam explosion, Carbohydrate Polymers 2010;81(3):720-725.
- Asim M, Jawaid M, Abdan K, Ridzwan Ishak M, Effect of alkali and silane treatments on mechanical and fibre-matrix bond strength of kenaf and pineapple leaf fibres, Journal of Bionic Engineering. 2016;13:426–435.
- Hadiji H, Assarar M, Zouari W, Pierre F, Behlouli K, Zouari B, Ayada R, Damping analysis of nonwoven natural fibrereinforced polypropylene composites used in automotive interior parts, Polymer Testing. 2020;89:106692.
- 8. Langhorst AE, Burkholder J, Long J, Thomas R, Kiziltas A, Mielewski D, Bioresources blue-agave fiber-reinforced polypropylene composites for automotive applications. 2018;13(1):820-835.
- Ayrilmis N, Jarusombuti S, Fueangvivat V, Bauchongkol P, White RH, Coir fiber reinforced polypropylene composite panel for automotive interior applications, Fibers and Polymers. 2011; 12:919.
- Rosli 10. MU. Riduan Jamalludin Khor CY, Ikman Ishak M , Jahidi H, Yeop Wasir N. Faizal WM. Wan Draman WNA, Lailina NM, Ismail RI, Analytical hierarchy process natural fiber composites automotive thermoset matrix selection. MATEC Web of Conferences. 2017;97: 01039.
- 11. Kumar N, Das D, Fibrous biocomposites from nettle (*Girardinia diversifolia*) and poly (lactic acid) fibers for automotive dashboard panel application. Composites Part B. 2017;130:54-63.
- Holbery J, Houston D, Natural-fiberreinforced polymer composites in automotive applications, JOM. 2006;58: 80–86.
- 13. Indra Reddy M, Anil Kumar M, Rama Bhadri Raju C, Tensile and flexural properties of jute, pineapple leaf and glass fiber reinforced polymer matrix hybrid composites, Materials Today: Proceedings. 2018;5(1):458-462.
- Asim M, Paridah MT, Saba N, Jawaid M, Alothman OY, Nasir M, Almutairi Z, Thermal, physical properties and flammability of silane treated kenaf/pineapple leaf fibres phenolic hybrid composites Composite Structures. 2018; 202:1330-1338.

- Siakeng R, Jawaid M, Ariffin H, Sapuan SM, Mechanical, dynamic, and thermomechanical properties of coir/pineapple leaf fiber reinforced polylactic acid hybrid biocomposites, Polymer Composites. 2019;40:2000–2011.
- Shih YF, Chang WC, Liu WC, Lee CC, Kuan CS, Yu YH, Pineapple leaf/recycled disposable chopstick hybrid fiberreinforced biodegradable composites, Journal of the Taiwan Institute of Chemical Engineers. 2014;45(4):2039-2046.
- Uma Devi L, Bhagawan SS, Thomas S, Polyester composites of short pineapple fiber and glass fiber: Tensile and impact properties, Polymer Composites. 2012; 33(7):1064-1070.
- 18. Arib RMN, Sapuan SM, Ahmad MHM, Paridah MT, Khairul Zaman HMD, Mechanical properties of pineapple leaf fibre reinforced polypropylene composites, Materials & Design. 2006;27(5):391-396.
- Liu W, Misra M, Askeland P, Drzal LT, Mohanty AK, 'Green' composites from soy based plastic and pineapple leaf fiber: Fabrication and properties evaluation, Polymer. 2005;46(8):2710-2721.
- Luo S, Netravali AN, Interfacial and mechanical properties of environmentfriendly "green" composites made from pineapple fibers and poly (hydroxybutyrate-co-valerate) resin, Journal of Materials Science. 1999;34:3709–3719.
- 21. Threepopnatkul P, Kaerkitcha N, Athipongarporn N, Effect of surface treatment on performance of pineapple leaf fiber— polycarbonate composites, Composites Part B. 2009;40(7):628-632.
- George J, Bhagawan SS, Thomas S. Effects of environment on the properties of low-density polyethylene composites reinforced with pineapple-leaf fibre. Composites Science and Technology. 1998;58(9):1471-1485.
- 23. Uma Devi L, Bhagawan SS, Thomas S, Mechanical properties of pineapple leaf fiber-reinforced polyester composites. Journal of Applied Polymer Science. 1997;64:1739–1748.
- Klein J, Wiese J, High performance engineered polypropylene compounds for high temperature automotive under-thehood applications. In: Society of Plastics Engineers 11th Annual Automotive Composites Conference and Exhibition, ACCE; 2011.

- 25. Friedrich K, Almajid AA, Manufacturing aspects of advanced polymer composites for automotive applications, Applied Composite Materials. 2013;20:107–128.
- Asim M, Abdan K, Jawaid M, Nasir M, Dashtizadeh Z, Ishak MR, Hoque ME, A review on pineapple leaves fibre and its composites. International Journal of Polymer Science; 2015. Article ID 950567.
- Daramola OO, Adediran AA, Adewuyi BO, Adewole O, Mechanical properties and water absorption behaviour of treated pineapple leaf fibre reinforced polyester matrix composites. Leonardo Journal of Sciences. 2017;30:15-30.
- Debnath S, Pineapple Leaf Fibre—A Sustainable Luxury and Industrial Textiles. Handbook of Sustainable Luxury Textiles and Fashion. 2016;35-49.
- Hazarika D, Gogoi N, Jose S, Das R, Basu G, Exploration of future prospects of Indian pineapple leaf, an agro waste, for textile application, Journal of Cleaner Production. 2017;141:580-586.
- 30. Adekomaya O, Adaption of green composite in automotive part replacements: Discussions on material modification and future patronage, Environmental Science and Pollution. 2020;27:8807-8813.

- 31. Dunne R, Desai D, Sadiku R, Jayaramudu J, A review of natural fibres, their sustainability and automotive applications. Journal of Reinforced Plastics and Composites 2016;35(13): 1041-1050.
- Reddy BS, Rajesh M, Sudhakar E, Rahaman A, Kandasamy J, Sultan MTH, Pineapple Leaf Fibres for Automotive Applications, in: Pineapple Leaf Fibers, Jawaid M, Asim M, Tahir PM, Nasir M, Springer. 2020:279-296.
- Arbintarso ES, Muslim M, Rusianto T, Simulation and failure analysis of car bumper made of pineapple leaf fiber reinforced composite, IOP Conf. Series: Materials Science and Engineering. 2018; 306:012038.
- Singh T, Pruncu CI, Gangil B, Singh V, Fekete G, Comparative performance assessment of pineapple and Kevlar fibers based friction composites. Journal of Materials Research and Technology. 2020; 9(2):1491-1499.
- Shaharuzaman MA, Sapuan SM, Mansor MR, Zuhri MYM. Decision support strategy in selecting natural fiber materials for automotive side-door impact beam composites. Journal of Renewable Materials. 2019;7(10):997-1010.

Peer-review history:
The peer review history for this paper can be accessed here:
http://www.sdiarticle4.com/review-history/62221

^{© 2020} Sangilimuthukumar et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.